
Comput. Methods Appl. Math. 2019; 19(3): 523–555

Research Article

Jaime Mora* and Leszek Demkowicz

Fast Integration of DPG Matrices Based on
Sum Factorization for all the Energy Spaces
https://doi.org/10.1515/cmam-2018-0205
Received August 9, 2018; revised January 26, 2019; accepted March 1, 2019

Abstract: Numerical integration of the stiffness matrix in higher-order finite element (FE) methods is rec-
ognized as one of the heaviest computational tasks in an FE solver. The problem becomes even more rel-
evant when computing the Gram matrix in the algorithm of the Discontinuous Petrov Galerkin (DPG) FE
methodology.Making use of 3D tensor-product shape functions, and the concept of sum factorization, known
from standard high-order FE and spectral methods, here we take advantage of this idea for the entire exact
sequence of FE spaces defined on the hexahedron. The key piece to the presented algorithms is the exact
sequence for the one-dimensional element, and use of hierarchical shape functions. Consistent with existing
results, the presented algorithms for the integration of H1, H(curl), H(div), and L2 inner products, have the
O(p7) computational complexity in contrast to the O(p9) cost of conventional integration routines. Use of
Legendre polynomials for shape functions is critical in this implementation. Three boundary value problems
under different variational formulations, requiring combinations of H1, H(div) and H(curl) test shape func-
tions, were chosen to experimentally assess the computation time for constructing DPG element matrices,
showing good correspondence with the expected rates.

Keywords: Sum Factorization, Fast Integration, Tensor Product, DPG, Discontinuous Petrov Galerkin, Finite
Element Method, Energy Spaces, Element Matrices

MSC 2010: 65N30, 65D30, 65Y20

1 Introduction
During the computation of a numerical solution to a linear boundary value problem using a finite element
(FE) method, two major tasks are carried out by the computer processors, namely, calculation and assembly
of the stiffness matrix and the load vector, and the solution of the linear system. The latter depends mostly
on the size and properties of the global stiffness matrix, while the former depends more heavily on the local
characteristics of every element in themesh, as both the load vector and stiffnessmatrix are first computed at
the element level. In higher-order finite elements, the calculation of the integrals that compose such matrix
and vector may become costly since the higher the degree of a polynomial integrand, the larger the number
of quadrature points needed to perform an exact (or at least a well approximated) numerical integration. Our
interest in this article is to combine several results that can lead to significant savings in three-dimensional
DPG computations.

*Corresponding author: Jaime Mora, Institute for Computational Engineering and Sciences (ICES), The University of Texas
at Austin, 201 E 24th St, Austin, TX 78712, USA, e-mail: jmorapaz@ices.utexas.edu
Leszek Demkowicz, Institute for Computational Engineering and Sciences (ICES), The University of Texas at Austin,
201 E 24th St, Austin, TX 78712, USA, e-mail: leszek@ices.utexas.edu

524 | J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization

In FE, every type of element can be associated to one ormore families of shape functions, whether for the
trial space or for the test space. In two spatial dimensions, the only conventional tensor-product element is the
quadrilateral, which is generated by tensor-multiplying two line segments. In 3D, the conventional element
types are thehexahedron, the tetrahedron, the (triangular) prismand thepyramid (of quadrilateral base) [12].
Out of them, the hexahedron and the prism are examples of tensor-product elements. The hexahedron is
a triple tensor product of 1D intervals, and the prism is a tensor product of a triangle in 2D and a 1D interval.
Thus the standard shape functions for these two types of elements are tensor products of the shape functions
associated to their lower-dimension generating elements.

The idea of using sum factorization for computing 2D and 3D integrals has been an established tech-
nique for spectral methods in CFD [14, 23], later adopted for p- and hp-FE with higher-order shape functions
by Melenk, Gerdes and Schwab [19]. It was additionally implemented for the case of a fully automatic hp-
adaptive FE solution of the Helmholtz equation by Kurtz [18], therein delivering explicit steps to compute
the matrix while keeping a low memory requirement. More recently, the tensor-product nature of the shape
functions in Bernstein–Bézier FE and isogeometric analysis also motivated the extension of this integration
for the stiffness matrices of those methods [1, 2].

Use of fast integration algorithms becomes even more critical in an efficient implementation of the Dis-
continuousPetrovGalerkin (DPG) FEmethodology. In order to see that, let us first refer to a classicGalerkin FE
method in 3D. Let p denote the order of polynomial basis for discretizing the solution. The algebraic structure
of the final linear system reads

Bu = l

with square stiffness matrix B of sizeO(p3) × O(p3), solution vector u and load vector l, both of the same size
O(p3). In DPG, we enrich the test space usually by increasing the polynomial order in ∆p only for the test
functions. Here the single equation above is replaced by a larger system

(
G B B̃
BT 0 0
B̃T 0 0

)(
s
u
w
) =(

l
0
0
)

with additional unknowns s (size O((p + ∆p)3)) and w (size O(p2)), matrices G (square, size O(p + ∆p)3),
B (resized to O((p + ∆p)3) × O(p3)), B̃ (size O((p + ∆p)3) × O(p2)), and load vector l (resized to O((p + ∆p)3)).
A conventional numerical integration of all these matrices has a complexity with leading terms of

O((p + ∆p)9) + O((p + ∆p)6p3)

floating point operations. Furthermore, we can retrieve a smaller symmetric system by statically condens-
ing s, obtaining

(
BTG−1B BTG−1B̃
B̃TG−1B B̃TG−1B̃

)(
u
w
) = (

BTG−1l
B̃TG−1l
) .

Reaching this point involves a cost of O((p + ∆p)9) operations for the Cholesky factorization and neces-
sary substitution steps to get G−1l, O((p + ∆p)9p3) for G−1B and G−1B̃, and a leading cost of O(p6(p + ∆p)6)
for the final matrix-matrix multiplications. These costs are almost unavoidable in order to have a solution
using the DPGmethodology, andwe can handle them in an efficient way using highly specialized linear alge-
bra libraries, which results in a smaller CPU time. Thus, if we want to get time savings in this technique, the
part on which we can focus is the construction of G, B, B̃ and l. Matrix G, hereinafter referred to as the Gram
matrix, is of special interest as it is the largest array within the element level calculations. Therefore, having
as a basis the sum factorization approachesmentioned earlier, we aim in this paper to adapt those algorithms
to the computation of G and finally obtain a significant saving in the implementation of DPG. In particular,
we can easily extend these ideas to the integration of B if the variational formulation is the ultraweak. For
more details on the derivation of the shown DPG system of equations, see Section 3.

In the present paper, when deriving the algorithms, we restrict ourselves to working with Gram matri-
ces coming from the standard inner products only; however, it will be shown in one of the application cases
that these ideas can also be extended to a more involved type of inner product. Moreover, we restrict our-

J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization | 525

selves to real-valued functions for simplicity, but no major modification is anticipated when moving into
complex-valued functions. We also work just on the hexahedron case. For the subject of FE shape functions,
this article uses as a main reference the thorough review of shape functions for elements of all shapes done
by Fuentes et al. [12].We now outline the document: in Section 2, we explain the process of sum factorization
and develop algorithms to apply the technique for all the Hilbert spaces belonging to the exact sequence; in
Section3,weprovide several examples ofDPG implementations andobserve the computing time for theGram
matrix and other matrices, followed by a discussion. We will finally close the article with a few conclusions
and mentions to possible future extensions of the present work.

2 Sum Factorization for all the Energy Spaces
The approach sought in this article is related to the concept of exact sequences of energy spaces. With that
starting point, we go from infinite-dimensional energy spaces to finite-dimensional subspaces, which in the
end are the ones we implement in any finite element method. We later define tensor-product spaces and
proceed to study how to compute the Gram matrix for each space of the exact sequence for the hexahedron
of the first type [22].

2.1 Exact Sequences

Let X0, X1, . . . , XNs be a finite family of vector spaces. LetAi : Xi−1 → Xi be a linear operator for i = 1, . . . , Ns.
We say that the following sequence or complex

X0
A1→ X1

A2→ ⋅ ⋅ ⋅
ANs→ XNs

is exact if, for i = 1, 2, . . . , Ns − 1, it holds that R(Ai) = N(Ai+1) (where R denotes the range of the operator
andN symbolizes the nullspace or kernel). In the context of energy spaces, i.e., Hilbert spaces for the solution
of variational formulations of boundary value problems, we will define an exact sequence for our cases of
interest, specifying both the energy spaces and operators involved.

In the paper, Ω will denote a bounded and simply connected domain inℝN , N = 1, 3.

2.1.1 Exact Sequence in 1D (Ω = (a, b), a, b ∈ ℝ, a < b)

ℝ
id
→ H1(Ω) ∂

→ L2(Ω) 0
→ {0}.

The presence of a zero operator in the last link of the exact sequence indicates that ∂ is a surjection. Similarly,
the presence of the first link means that the nullspace of ∂ consists only of constant functions. Hereinafter,
we omit writing both the first and last links of the sequence, remembering that the last operator must be
a surjection, and that the nullspace of the first one is made only by constant functions.

2.1.2 Exact Sequence in 3D

The three-dimensional exact sequence involves all three classical vector calculus’ differential operators,

H1(Ω)
∇
→ H(curl, Ω) curl→ H(div, Ω) div→ L2(Ω). (2.1)

We are interested in tensor-product three-dimensional finite elements equipped with discrete subspaces
of each of the exact sequence spaces (2.1). The most relevant example is the hexahedron since it is a triple
tensor product of the 1D simplex, the interval.

526 | J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization

2.2 Tensor-Product Finite Element Shape Functions

Let I = (0, 1) be the master interval in ℝ, and denote the master hexahedron by K̂ := I3 (in what follows,
K̂and I3will beused interchangeably). LetxK : K̂→ Kbe the elementmap, transforming themaster element
into a physical space elementK. Suppose xK is a diffeomorphism over K̂. Then the Jacobian matrix J is well
defined,

J :=
∂xK
∂ξ ,

where ξ is the position vector in the parametric (master) domain. The determinant of the Jacobian will be
denoted |J| := det J.

Let Tgrad : H1(K̂)→ H1(K) be the map that takes the H1 finite element space defined on the master
domain K̂ to the physical space element K. In the same fashion, consider analogue maps denoted Tcurl,
Tdiv, T; these are the pullback or Piola maps for each function space in (2.1), and they are defined as follows
(see [10, § 2.1.5]):

H1(K̂) ∋ ̂u → Tgrad ̂u := ̂u ∘ x−1K = u ∈ H
1(K), (2.2)

H(curl, K̂) ∋ ̂E → Tcurl ̂E := (J−T ̂E) ∘ x−1K = E ∈ H(curl,K), (2.3)

H(div, K̂) ∋ V̂ → TdivV̂ := (|J|−1JV̂) ∘ x−1K = V ∈ H(div,K), (2.4)

L2(K̂) ∋ ̂q → T ̂q := (|J|−1 ̂q) ∘ x−1K = q ∈ L
2(K). (2.5)

As an important remark concerning notation, we have opted to use a circumflex or “hat” ()̂ above nearly
every function, domain or vector space defined in the master space.

Now it is known that, for an FE method implementation, we do not work with the entire energy space
but with a finite-dimensional linear subspace, usually consisting of polynomials. When we work on a mesh
ofmultiple elements, there exist different conditions for a finite-dimensional piecewise polynomial subspace
to be conforming to (i.e., to be a proper subspace of) each energy space. For the case ofH1, the piecewise poly-
nomial functionsmust be scalar-valued and globally continuous. InH(curl), wemust construct vector-valued
piecewise polynomials satisfying tangential continuity across elements. H(div)-conformity requires continu-
ity of the normal component of the vector-valued piecewise polynomial functions. Finally, L2-conformity
requires no kind of inter-element continuity for its scalar-valued functions. However, in this work, we focus
on the computations on a single element; then inter-element continuity is not a concern in our derivations.
However, it is valuable to be aware of this fact when choosing the finite element spaces and basis functions.

Following the notation in [10, 12], let us call the finite-dimensional subspaces for K̂ as follows:

Ŵp ⊊ H1(K̂),

Q̂p ⊊ H(curl, K̂),

V̂p ⊊ H(div, K̂),
̂Yp ⊊ L2(K̂),

where the superindex p symbolizes the nominal polynomial order of the sequence of spaces. Making sure
that these finite-dimensional subspaces form themselves an exact sequence is important as it leads to useful
properties when studying interpolants and approximability. We take that information as given because prov-
ing that fact is not central to this paper; thereby we just refer to those proofs within [10]. Through the Piola
transformations, we can get the resulting finite-dimensional subspaces in the physical space element. Those
would be

TgradŴp =: Wp ⊊ H1(K),

TcurlQ̂p =: Qp ⊊ H(curl,K),

TdivV̂p =: Vp ⊊ H(div,K),

T ̂Yp =: Yp ⊊ L2(K).

(2.6)

J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization | 527

Due to the elementmap being a diffeomorphism, there is a unique correspondence between any function
of the physical element subspaces and the master element subspaces:
∙ for all u ∈ Wp there is exactly one ̂u ∈ Ŵp such that u = Tgrad ̂u,
∙ for all E ∈ Qp there is exactly one ̂E ∈ Q̂p such that E = Tcurl ̂E,
∙ for all V ∈ Vp there is exactly one V̂ ∈ V̂p such that V = TdivV̂,
∙ for all q ∈ Yp there is exactly one ̂q ∈ ̂Yp such that q = T ̂q.
Those finite-dimensional subspaces for the hexahedron are [10, 22]

Ŵp = Qp1 ,p2 ,p3 (I3),
↑↑↓∇

Q̂p = Qp1−1,p2 ,p3 (I3) × Qp1 ,p2−1,p3 (I3) × Qp1 ,p2 ,p3−1(I3),
↑↑↓curl

V̂p = Qp1 ,p2−1,p3−1(I3) × Qp1−1,p2 ,p3−1(I3) × Qp1−1,p2−1,p3 (I3),
↑↑↓div

̂Yp = Qp1−1,p2−1,p3−1(I3),

(2.7)

where p1, p2, p3 are positive integers and, for any non-negative integers p, q, r, the space

Qp,q,r(I3) := Pp(I) ⊗ Pq(I) ⊗ Pr(I)

with Pp(I) being the space of univariate polynomials defined over I of degree less than or equal to p.
A space likeQp,q,r(I3) is known as a tensor-product polynomial space. If {f pi ; i = 0, . . . , p}, {f

q
j ; j = 0, . . . , q},

{f rk; k = 0, . . . , r} are bases for the polynomial spaces Pp(I), Pq(I), Pr(I), respectively, then

{f p,q,rijk ; i = 0, . . . , p; j = 0, . . . , q; k = 0, . . . , r}

is a basis for Qp,q,r(I3), where these functions are defined by

f p,q,rijk (ξ) = f
p
i (ξ1)f

q
j (ξ2)f

r
k(ξ3) for all ξ ∈ I3; i = 0, . . . , p; j = 0, . . . , q; k = 0, . . . , r.

Corresponding polynomial subspaces are also defined for the one-dimensional interval’s exact sequence.
They are

Ŵp
I = P

p(I) ⊊ H1(I),
↑↑↓∂

̂YpI = P
p−1(I) ⊊ L2(I).

Following the property of the exact sequence explained above, it must hold that ∂Ŵp
I = ̂Y

p
I , which is easy

to verify.
Notice how the hexahedron’s exact sequence may be reconstructed by using the 1D interval’s exact

sequence multiple times.

Ŵp = Ŵp1
I ⊗ Ŵ

p2
I ⊗ Ŵ

p3
I ,

↑↑↓∇=(∂1 ,∂2 ,∂3)

Q̂p = ̂Yp1I ⊗ Ŵ
p2
I ⊗ Ŵ

p3
I × Ŵ

p1
I ⊗ ̂Y

p2
I ⊗ Ŵ

p3
I × Ŵ

p1
I ⊗ Ŵ

p2
I ⊗ ̂Y

p3
I ,

↑↑↓curl=(∂2(⋅)3−∂3(⋅)2 ,∂3(⋅)1−∂1(⋅)3 ,∂1(⋅)2−∂2(⋅)1)

V̂p = Ŵp1
I ⊗ ̂Y

p2
I ⊗ ̂Y

p3
I × ̂Y

p1
I ⊗ Ŵ

p2
I ⊗ ̂Y

p3
I × ̂Y

p1
I ⊗ ̂Y

p2
I ⊗ Ŵ

p3
I ,

↑↑↓div=∂1(⋅)1+∂2(⋅)2+∂3(⋅)3
̂Yp = ̂Yp1I ⊗ ̂Y

p2
I ⊗ ̂Y

p3
I .

This shows that, if in an FE element subroutine we replace the calls to 3D shape functions by multiple calls
to the 1D shape functions, we can reconstruct all the spaces in the exact sequence. As it will be explained
below, doing this can provide great benefits with regard to computational performance.

528 | J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization

Finally, the Grammatrix that is going to be studied throughout this work is explicitly defined as follows.
LetH be a finite-dimensional Hilbert space with inner product (⋅ , ⋅)H, dimH = Nh, and a basis {hI}NhI=1. The
Gram matrix GH is given by

GH
IJ := (hI , hJ)H for I, J = 1, . . . , Nh . (2.8)

Our goal is to propose algorithms to compute a Grammatrix (2.8) more efficiently than the conventional
ones when dealing with tensor-product finite-element spaces of shape functions. All the energy spaces in
the 3D exact sequence (2.1) are going to be analyzed (setting Ω = K); thereby a particular inner product is
required to be defined in every case. The finite-dimensional Hilbert spaces will be those defined in (2.6).

The following subsections are presented in order of complexity instead of their position in the exact
sequence. We remark that, although the first two cases to be described may be well known (i.e., L2 and H1),
they introduce notions that are fundamental to familiarize with the procedure and so derive the other two
cases (H(div) and H(curl) spaces – harder to find in the literature) in a systematic manner, which is possibly
the main contribution of this work.

Remark 2.1. Even though the concept of exact sequence of finite element spaces has implications in approx-
imability, we do not deal with that theory here. Instead, our main reason to invoke it is mostly to show that
we are including in this work all four possible energy spaces. Other families of H1, H(curl), H(div) and L2

finite element subspaces that do not form exact sequences, but that are tensor-product derived and for which
Piola mappings (2.2)–(2.5) are valid, are suitable too for the fast integration algorithms presented below.
In particular, if those spaces form a complex (as defined in Section 2.1, i.e., if R(Ai) ⊂ N(Ai+1) for all i), the
results must hold despite the non-exactness. However, we advise a careful implementation when trying the
algorithms in such a scenario, as well as checking that our derivations remain valid for the spaces at hand.

Remark 2.2. The following sections comprise an intensive notation dealing with indices, which produce
long and complicated expressions. To avoid further complexity and any possible confusion, no summation
convention is used anywhere in this paper.

2.3 Space L2

Let us recall the definition of the L2(K) space,

L2(K) = {Lebesgue-measurable functions f : K→ ℝ : ∫
K

|f(x)|2 d3x <∞}.

The symbol for the inner product in L2(K), (⋅ , ⋅)L2(K), typically incorporates the domain of integration
as a subscript,

(φ, ϑ)K := (φ, ϑ)L2(K) = ∫
K

φ(x)ϑ(x) d3x for all φ, ϑ ∈ L2(K).

For vector-valued functions living in L2(K) := (L2(K))3, the associated inner product is defined compo-
nentwise, that is,

(Φ, Θ)K := (Φ, Θ)L2(K) = ∫
K

Φ(x)TΘ(x) d3x =
3
∑
d=1
(φd , ϑd)

for all Φ = (φ1, φ2, φ3), Θ = (ϑ1, ϑ2, ϑ3) ∈ L2(K).

Let the order of the shape functions for the master hexahedron be (p1, p2, p3), in the sense of the exact
sequence (2.7). Consider a basis for Yp, {υI}dim Yp−1

I=0 , where dim Yp = p1p2p3. Thus, for any pair of integers
0 ≤ I, J < dim Yp, the corresponding entry for the L2 Grammatrix G is obtained as follows:

GIJ = (υI , υJ)K = ∫
K

υI(x)υJ(x) d3x

= ∫

K̂

υI ∘ xK(ξ)υJ ∘ xK(ξ)|J(ξ)| d3ξ

J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization | 529

= ∫

K̂

(T ̂υI) ∘ xK(ξ)(T ̂υJ) ∘ xK(ξ)|J(ξ)| d3ξ

= ∫

K̂

[(|J|−1 ̂υI) ∘ x−1K] ∘ xK(ξ)[(|J|
−1 ̂υJ) ∘ x−1K] ∘ xK(ξ)|J(ξ)| d

3ξ

= ∫

K̂

̂υI(ξ) ̂υJ(ξ)|J(ξ)|−1 d3ξ

=
1

∫
0

1

∫
0

1

∫
0

̂υI(ξ1, ξ2, ξ3) ̂υJ(ξ1, ξ2, ξ3)|J(ξ1, ξ2, ξ3)|−1 dξ3 dξ2 dξ1, (2.9)

where the definition of the L2 Piola map (see (2.5)) was applied, and the element map between the master
and physical space was invoked to transform the integrand. In the last line of derivation (2.9), the volume
integral over the master hexahedron is rewritten as three univariate integrals over the master interval. Now,
since ̂υI and ̂υJ belong to ̂Yp, they are tensor-product polynomials in Qp1−1,p2−1,p3−1(I3); thus, if we take ̂υI
as the model case, we have

̂υI(ξ1, ξ2, ξ3) := ν1;i1 (ξ1)ν2;i2 (ξ2)ν3;i3 (ξ3),

where the univariate polynomials {νa;ia }
pa−1
ia=0 form a basis of shape functions for the space Ppa−1(I), for

a = 1, 2, 3, and the integer indices 0 ≤ ia < pa are given so that they uniquely correspond to the original
index I (e.g., through the formula I = i1 + p1i2 + p1p2i3). It is important to remark that should we account
for a hierarchical basis of polynomials, then we could use that basis for each Ppa−1(I), and the need for the
first identifier in the index of νa;ia goes away. Assuming that is the case, we can rewrite ̂υI and ̂υJ as

̂υI(ξ1, ξ2, ξ3) = νi1 (ξ1)νi2 (ξ2)νi3 (ξ3),
̂υJ(ξ1, ξ2, ξ3) = νj1 (ξ1)νj2 (ξ2)νj3 (ξ3).

(2.10)

Combining (2.9) and (2.10), we get

(υI , υJ)K =
1

∫
0

1

∫
0

1

∫
0

νi1 (ξ1)νi2 (ξ2)νi3 (ξ3)νj1 (ξ1)νj2 (ξ2)νj3 (ξ3)|J(ξ1, ξ2, ξ3)|−1 dξ3 dξ2 dξ1

=
1

∫
0

νi1 (ξ1)νj1 (ξ1){
1

∫
0

νi2 (ξ2)νj2 (ξ2)[
1

∫
0

νi3 (ξ3)νj3 (ξ3)|J(ξ1, ξ2, ξ3)|−1 dξ3] dξ2} dξ1. (2.11)

The second line above depicts how the original volume integral turns into three nested interval integrals
through Fubini’s theorem. Let us define a sequence of auxiliary functions with which we will assemble the
triple integral in (2.11).

GAi3 j3 (ξ1, ξ2) :=
1

∫
0

νi3 (ξ3)νj3 (ξ3)|J(ξ1, ξ2, ξ3)|−1 dξ3, (2.12)

GBi2 j2 i3 j3 (ξ1) :=
1

∫
0

νi2 (ξ2)νj2 (ξ2)GAi3 j3 (ξ1, ξ2) dξ2, (2.13)

⇒ GIJ = Gi1 j1 i2 j2 i3 j3 :=
1

∫
0

νi1 (ξ1)νj1 (ξ1)GBi2 j2 i3 j3 (ξ1) dξ1. (2.14)

Given ξ1, ξ2, we can evaluate GAi3 j3 with numerical integration. Let ξ n3 , n = 1, . . . , N, be the collection
of quadrature points in the interval (0, 1) that make a polynomial integrand of degree 2N − 1 be numeri-
cally integrated with full accuracy, and let wN3 be the associated weight. Then the value of (2.12) may be
approximated by

GAi3 j3 (ξ1, ξ2) ≈
N
∑
n=1

νi3 (ξ n3)νj3 (ξ
n
3)|J(ξ1, ξ2, ξ

n
3)|
−1wn3 . (2.15)

530 | J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization

In the same manner, let ξm2 , w
m
2 with m = 1, . . . ,M and ξ l1, w

l
1 with l = 1, . . . , L. We can approximate

thus expressions (2.13) and (2.14) as

GBi2 j2 i3 j3 (ξ1) ≈
M
∑
m=1

νi2 (ξm2)νj2 (ξ
m
2)G

A
i3 j3 (ξ1, ξ

m
2)w

m
2 , (2.16)

Gi1 j1 i2 j2 i3 j3 ≈
L
∑
l=1
νi1 (ξ l1)νj1 (ξ

l
1)G

B
i2 j2 i3 j3 (ξ

l
1)w

l
1. (2.17)

Making distinction of different sets of quadrature points makes sense when the individual polynomial
degrees are not equal, but even in that case, things may get simpler if we choose to work only with the
largest of those sets in all cases, and we can therefore establish L = M = N, ξ l1 = ξ

l
2 = ξ

l
3 = ζ l and the weight

wl1 = w
l
2 = w

l
3 = wl for every l between 1 and L. Below, it will be clear that even after taking this shortcut, the

complexity of the resulting algorithm will not be driven by such a quadrature order.
Supposewewant to approximate the triple integral in the last line of (2.9)without taking advantage of the

sum factorization process. Thenwewill have L3 quadrature points, which are the triplets (ξ l1, ξ
m
2 , ξ

n
3) =: ξ lmn,

with their associated weights wlmn := wlwmwn so the approximate inner product will be

GIJ = (υI , υJ)K ≈
L
∑
l=1

L
∑
m=1

L
∑
n=1
̂υI(ξ lmn) ̂υJ(ξ lmn)|J(ξ lmn)|−1wlmn . (2.18)

Clearly, (2.18) and (2.15)–(2.17) are equivalent if we use the samequadrature order per coordinate. How-
ever, here lies the entire spirit of the sum-factorization or tensor-product-based integration, as we will see.
Firstly, it is a direct observation that the algorithm to compute (2.18) is the conventional one in 3D finite ele-
ment codes, which is presented in Algorithm 1. Here, as usual in FE algorithms, the symmetry GIJ = GJI is
taken advantage of so that the off-diagonal entries are computed only once. Please note that whenever a sub-
routine call is made in any of the algorithms below, the first arguments given are inputs, with a semicolon
separating them from the outputs. Moreover, outputs written within curly brackets denote arrays.

If we have a uniform polynomial degree p = p1 = p2 = p3, we will need at least L = p to compute the
approximate integral. Consequently, in Algorithm 1, the accumulation statement is going to be executed
1
2p

6(p3 + 1) times. This represents an operation count of O(p9).
Now let us study the algorithm for the tensor-product-based integration. The way we nested the inter-

val integrals in (2.11) suggests we can perform a similar ordering in the algorithm loops. The idea is to fix
a quadrature point in the coordinate 1, then compute the corresponding term in the sum of (2.17), for which
we need to go over each quadrature point in coordinate 2 in order to obtain the sum in (2.16), and at each step
of those it is required to go over all the quadrature points in the third coordinate and evaluate the expression
(2.15); all must iterate until the sum to approximate the inner product is completed.

procedure L2Gram(iel , G) ⊳ Compute matrix G for element No. iel – Conventional algorithm
call setquadrature3D(iel , p1, p2, p3; L, {ξ lmn , wlmn})
G← 0 ⊳ Initialize Gram matrix
for l,m, n = 1 to L do

call Shape3L2(ξ lmn , p1, p2, p3; { ̂υI(ξ lmn)}) ⊳ Evaluate 3D shape functions at ξ lmn
call geometry(ξ lmn , iel;x, J(ξ lmn), J−1(ξ lmn), |J|) ⊳ Compute x and Jacobian
for J = 0 to dim Yp − 1 do

for I = J to dim Yp − 1 do
GIJ ← GIJ + ̂υI(ξ lmn) ̂υJ(ξ lmn)|J|−1wlmn ⊳ Accumulate through (2.18)

return G

Algorithm 1: Conventional computation of the L2 Gram matrix.

J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization | 531

procedure L2GramTensor(iel , G) ⊳ Compute matrix G for element No. iel – Sum factorization
pmax ← max{p1, p2, p3}
call setquadrature1D(iel , pmax − 1; L, {ζ l , wl})
G← 0 ⊳ Initialize Gram matrix
for l = 1 to L do

call Shape1L2(ζ l , p1; {νi1 (ζ l)}) ⊳ Evaluate 1D shape functions at ζ l

for j3 = 0 to p3 − 1 do
for i3 = j3 to p3 − 1 do

GB ← 0
for m = 1, L do

call Shape1L2(ζm , p2; {νi2 (ζm)}) ⊳ Evaluate 1D shape functions at ζm

GA ← 0
for n = 1 to L do

call Shape1L2(ζ n , p3; {νi3 (ζ n)}) ⊳ Evaluate 1D shape functions at ζ n

ξ lmn ← (ζ l , ζm , ζ n)
call geometry(ξ lmn , iel;x, J(ξ lmn), J−1(ξ lmn), |J|) ⊳ Compute x and Jacobian
GAi3 j3 ← GAi3 j3 + νi3 (ζ

n)νj3 (ζ n)|J|−1wn ⊳ Accumulate through (2.15)

for j2 = 0 to p2 − 1 do
for i2 = j2 to p2 − 1 do

GBi2 j2 i3 j3 ← GBi2 j2 i3 j3 + νi2 (ζ
m)νj2 (ζm)GAi3 j3 (ζ

l , ζm)wm ⊳ From (2.16)

for j2 = 0 to p2 − 1 do
for i2 = j2 to p2 − 1 do

for j1 = 0 to p1 − 1 do
for i1 = j1 to p1 − 1 do

Gi1 j1 i2 j2 i3 j3 ← Gi1 j1 i2 j2 i3 j3 + νi1 (ζ l)νj1 (ζ l)GBi2 j2 i3 j3 (ζ
l)wl ⊳ From (2.17)

return G

Algorithm 2: Computation of the L2 Gram matrix by sum factorization.

Additionally, see (2.12)–(2.14) to notice the symmetry in GAi3 j3 = G
A
j3 i3 and the two minor symmetries in

the other auxiliary function GBi2 j2 i3 j3 = G
B
j2 i2 i3 j3 = G

B
i2 j2 j3 i3 = G

B
j2 i2 j3 i3 . Furthermore, we have the symmetry of the

inner product, also noticeable in (2.14). Those symmetries can be exploited in order to make a more efficient
computation of the Gram matrix. Algorithm 2 and the ones below include all the symmetry considerations
and, whenever these algorithms are coded, it is important to later retrieve those entries that can be accessed
doing use of symmetries.

Assuming thatAlgorithm2 is usedhavinguniformpolynomial degree p, then the cost of the integration is
driven by the accumulation for each index combination of Gi1 j1 i2 j2 i3 j3 , which is executed p[12p(p + 1)]

3 times,
making a cost of O(p7).

It isworthmentioning that the arrayGi1 ij1 i2 j2 i3 j3 needs not be constructed, especially if taking into account
computer memory issues. Instead, its value can be directly accumulated into the corresponding entry of G.

In case the polynomial degrees are not uniform, different 1D rules could be applied per coordinate. If
so, a key point in the implementation of Algorithm 2 would be to reorder the integral nesting to make the
quadrature points in the outermost loop correspond to the coordinate with the least polynomial order.

This saving of two orders of magnitude will be observed in all the remaining cases, although some may
involve more complicated calculations.

Remark 2.3. The position of the loops for i3, j3 in Algorithm 2 was adopted from the one in Jason Kurtz’s
dissertation [18] and allows to save the memory associated to the indices i3, j3 in all the auxiliary arrays. We
insist in this ordering for all the algorithmspresentedon this documentbecause inDPG, as in anyhigher-order
FE technique, the polynomial degrees used could make the size of those arrays considerably large.

532 | J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization

procedure L2GramTensor(iel , G) ⊳ Compute G for element No. iel – Alternative sum factorization
pmax ← max{p1, p2, p3}
call setquadrature1D(iel , pmax − 1; L, {ζ l , wl})
G← 0 ⊳ Initialize Gram matrix
for l = 1 to L do

call Shape1L2(ζ l , p1; {νi1 (ζ l)}) ⊳ Evaluate 1D shape functions at ζ l

GB ← 0
for m = 1, L do

call Shape1L2(ζm , p2; {νi2 (ζm)}) ⊳ Evaluate 1D shape functions at ζm

GA ← 0
for n = 1 to L do

call Shape1L2(ζ n , p3; {νi3 (ζ n)}) ⊳ Evaluate 1D shape functions at ζ n

for j3 = 0 to p3 − 1 do
for i3 = j3 to p3 − 1 do

ξ lmn ← (ζ l , ζm , ζ n)
call geometry(ξ lmn , iel;x, J(ξ lmn), J−1(ξ lmn), |J|) ⊳ Compute x and Jacobian
GAi3 j3 ← GAi3 j3 + νi3 (ζ

n)νj3 (ζ n)|J|−1wn ⊳ Accumulate through (2.15)

for j3 = 0 to p3 − 1 do
for i3 = j3 to p3 − 1 do

for j2 = 0 to p2 − 1 do
for i2 = j2 to p2 − 1 do

GBi2 j2 i3 j3 ← GBi2 j2 i3 j3 + νi2 (ζ
m)νj2 (ζm)GAi3 j3 (ζ

l , ζm)wm ⊳ From (2.16)

for j3 = 0 to p3 − 1 do
for i3 = j3 to p3 − 1 do

for j2 = 0 to p2 − 1 do
for i2 = j2 to p2 − 1 do

for j1 = 0 to p1 − 1 do
for i1 = j1 to p1 − 1 do

Gi1 j1 i2 j2 i3 j3 ← Gii j1 i2 j2 i3 j3 + νi1 (ζ l)νj1 (ζ l)GBi2 j2 i3 j3 (ζ
l)wl ⊳ From (2.17)

return G

Algorithm 3: Computation of the L2 Gram matrix – Alternative sum factorization.

Remark 2.4. Algorithm 2 leads to an operation count of O(p5) for the statement “call geometry(. . .)”. Notice
that for low values of p, this expensive call may cost a portion similar to the final accumulation statement.
Bringing into consideration Remark 2.3, if memory limitations are not a major concern, an alternative way
of implementing the sum factorization algorithm is shown in Algorithm 3, which reduces by two orders of
magnitude the number of times “call geometry(. . .)” is executed.

2.4 Space H1

This energy space is defined as
H1(K) = {u ∈ L2(K) : ∇u ∈ L2(K)}.

The inner product in H1(K) can be computed by means of the expression

(u, v)H1(K) := (u, v)K + (∇u, ∇v)K for all u, v ∈ H1(K).

The gradient ∇ used above is computed in the physical space, that is,

∇u = (∂u∂x1
,
∂u
∂x2

,
∂u
∂x3
) = (∂1u, ∂2u, ∂3u).

J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization | 533

Moreover, we will need the gradient in the parametric space coordinates of a function ̂v defined over K̂,

∇̂ ̂v = (∂
̂v

∂ξ1
,
∂ ̂v
∂ξ2

,
∂ ̂v
∂ξ3
) = (̂∂1 ̂v, ̂∂2 ̂v, ̂∂3 ̂v).

The exact sequence in 3D described earlier, alongwith the Piolamap definitions, imply that if u ∈ H1(K),
then ∇u ∈ H(curl,K) and that if u = Tgrad ̂u for some ̂u ∈ H1(K̂), then ∇u = Tcurl∇̂ ̂u. Of course, we also have
∇̂ ̂u ∈ H(curl, K̂). In other words, we have the commutativity between the gradients and the Piola maps, i.e.,
∇Tgrad = Tcurl∇̂.

Now let the order of the shape functions for the master hexahedron be (p1, p2, p3), in the sense of the
exact sequence (2.7). Consider a basis for Wp, {φI}dimWp−1

I=0 , where dimWp = (p1 + 1)(p2 + 2)(p3 + 1). Thus,
for any pair of integers 0 ≤ I, J < dimWp, the inner product is obtained as derived in (2.19).

Analogously to the L2 case, besides recalling the definitions of both Tgrad and Tcurl, in (2.19), we take
the same steps as above to achieve an expression suitable for applying sum factorization to get the H1 Gram
matrix, herein denoted Ggrad.

GgradIJ = (φI , φJ)H1(K)

= ∫
K

φI(x)φJ(x) d3x + ∫
K

[∇φI(x)]T∇φJ(x) d3x

= ∫

K̂

φI ∘ xK(ξ)φJ ∘ xK(ξ)|J(ξ)| d3ξ + ∫
K̂

[∇φI ∘ xK(ξ)]T∇φJ ∘ xK(ξ)|J(ξ)| d3ξ

= ∫

K̂

(Tgradφ̂I ∘ xK(ξ))(Tgradφ̂J ∘ xK(ξ))|J(ξ)| d3ξ

+ ∫

K̂

[∇(Tgradφ̂I) ∘ xK(ξ)]T[∇(Tgradφ̂J) ∘ xK(ξ)]|J(ξ)| d3ξ

= ∫

K̂

((φ̂I ∘ x−1K) ∘ xK(ξ))((φ̂J ∘ x
−1
K) ∘ xK(ξ))|J(ξ)| d

3ξ

+ ∫

K̂

[(Tcurl∇̂φ̂I) ∘ xK(ξ)]T[(Tcurl∇̂φ̂J) ∘ xK(ξ)]|J(ξ)| d3ξ

= ∫

K̂

φ̂I(ξ)φ̂J(ξ)|J(ξ)| d3ξ

+ ∫

K̂

[((J−T∇̂φ̂I) ∘ x−1K) ∘ xK(ξ)]
T[((J−T∇̂φ̂J) ∘ x−1K) ∘ xK(ξ)]|J(ξ)| d

3ξ

= ∫

K̂

φ̂I(ξ)φ̂J(ξ)|J(ξ)| d3ξ + ∫
K̂

[∇̂φ̂I(ξ)]TD(ξ)[∇̂φ̂J(ξ)]|J(ξ)| d3ξ

=
1

∫
0

1

∫
0

1

∫
0

{φ̂I(ξ)φ̂J(ξ) + [∇̂φ̂I(ξ)]TD(ξ)[∇̂φ̂J(ξ)]}|J(ξ)| dξ3 dξ2 dξ1, (2.19)

where the symmetric matrixD := J−1J−T contains the following entries:

D =(
D11 D12 D13
D21 D22 D23
D31 D32 D33

)

with D12 = D21, D13 = D31, D32 = D23, and all of the entries being dependent on ξ . The conventional algo-
rithm for (2.19) is presented as Algorithm 4.

The sum factorization process for the present situation begins with defining a tensor-product shape func-
tion. As φ̂I , φ̂I ∈ Ŵp = Qp1 ,p2 ,p3 (I3), it follows that

φ̂I(ξ1, ξ2, ξ3) = χi1 (ξ1)χi2 (ξ2)χi3 (ξ3),
φ̂J(ξ1, ξ2, ξ3) = χj1 (ξ1)χj2 (ξ2)χj3 (ξ3),

534 | J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization

procedure H1Gram(iel , Ggrad) ⊳ Compute matrix Ggrad for element No. iel – Conventional algorithm
call setquadrature3D(iel , p1, p2, p3; L, {ξ lmn , wlmn})
Ggrad ← 0 ⊳ Initialize Gram matrix
for l,m, n = 1 to L do

call Shape3H1(ξ lmn , p1, p2, p3; {φ̂I(ξ lmn)}, {∇̂φ̂I(ξ lmn)}) ⊳ 3D shape functions at ξ lmn
call geometry(ξ lmn , iel;x, J(ξ lmn), J−1(ξ lmn), |J|) ⊳ Compute x and Jacobian
D← J−1(ξ lmn)J−T(ξ lmn)
for J = 0 to dimWp − 1 do

for I = J to dimWp − 1 do
GgradIJ ← GgradIJ + {φ̂I(ξ lmn)φ̂J(ξ lmn) + [∇̂φ̂I(ξ lmn)]TD[∇̂φ̂J(ξ lmn)]} |J|wlmn

return Ggrad

Algorithm 4: Conventional computation of the H1 Gram matrix.

where the univariate polynomials {χia }
pa
ia=0 are a hierarchical basis of the polynomial space Ppa (I), for

a = 1, 2, 3, and the integer indices 0 ≤ ia, ja ≤ pa are given so that they hold a unique correspondence
to the original indices I, J (such as I = i1 + (p1 + 1)i2 + (p1 + 1)(p2 + 1)i3). Notice that the application of the
master-domain gradient to the shape functions makes effect to a single 1D basis function per component,
that is,

∇̂φ̂I =(
χi1 (ξ1)χi2 (ξ2)χi3 (ξ3)
χi1 (ξ1)χi2 (ξ2)χi3 (ξ3)
χi1 (ξ1)χi2 (ξ2)χi3 (ξ3)

) . (2.20)

In the calculation of GgradIJ , the integrand term [∇̂φ̂I(ξ lmn)]TD[∇̂φ̂J(ξ lmn)] represents the main change
with respect to the L2 problem. Using (2.20) for the expanded formof that expression,we derive the following
(for intermediate steps, see [10]):

[∇̂φ̂I]TD[∇̂φ̂J] = (χi1 χi2 χi3 , χi1 χ

i2 χi3 , χi1 χi2 χ

i3)(

D11 D12 D13
D21 D22 D23
D31 D32 D33

)(
χj1 χj2 χj3
χj1 χj2 χj3
χj1 χj2 χj3

)

= χi1 χ

j1 χi2 χj2 χi3 χj3D11

+ χi1 χj1 (χi2 χ

j2 χi3 χj3D12 + χi2 χj2 χi3 χj3D13)

+ χi1 χj1 (χ

i2 χj2 χi3 χj3D21 + χi2 χj2 χi3 χj3D31)

+ χi1 χj1 (χi2 χ

j2 χi3 χj3D22 + χi2 χj2 χi3 χ

j3D23 + χi2 χj2 χ

i3 χj3D32 + χi2 χj2 χi3 χ

j3D33). (2.21)

It is now clear that each term in (2.21) is associated to one entry of D. We can thus propose auxiliary
functions identified by the indices of each Dab. Additionally, after seeing the structure of (2.21), it would be
quite useful to have a tool that allows, in a systematic way, to shift between the shape function χia and its
derivative χia from one term to another. The inclusion of a binary superscript ⟨s⟩ can do such a task,

χ⟨s⟩ia =
{
{
{

χia if s = 0,
χia if s = 1.

(2.22)

Additionally, a really intuitive yet handy function to manage that binary superscript may be a Kronecker
delta. For instance, note that any term of (2.21) can be represented as

χ⟨δ1a⟩i1 χ⟨δ1b⟩j1 χ⟨δ2a⟩i2 χ⟨δ2b⟩j2 χ⟨δ3a⟩i3 χ⟨δ3b⟩j3 Dab with a, b = 1, 2, 3.

Although this whole article has as an important point of reference, the algorithm of sum factorization for
the Helmholtz equation (whose stiffness matrix is really similar to an H1 Gram matrix) in the dissertation of
Jason Kurtz [18], where each term of the factorized form of the integral conveyed a different auxiliary func-
tion, here we decide to provide a single definition of auxiliary functions at each level. These are followed by

J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization | 535

a sumover a, b, hence returning all the terms for the required Grammatrix. This new perspectivewas applied
because one of the goals of the current work is to develop a general framework for the four spaces in the exact
sequence. Consider the definitions

G
grad A
ab;i3 j3 (ξ1, ξ2) :=

1

∫
0

χ⟨δ3a⟩i3 (ξ3)χ
⟨δ3b⟩
j3 (ξ3)Dab(ξ1, ξ2, ξ3)|J(ξ1, ξ2, ξ3)| dξ3, (2.23)

G
grad B
ab;i2 j2 i3 j3 (ξ1) :=

1

∫
0

χ⟨δ2a⟩i2 (ξ2)χ
⟨δ2b⟩
j2 (ξ2)G

grad A
ab;i3 j3 (ξ1, ξ2) dξ2, (2.24)

G
grad
ab;i1 j1 i2 j2 i3 j3 :=

1

∫
0

χ⟨δ1a⟩i1 (ξ1)χ
⟨δ1b⟩
j1 (ξ1)G

grad B
ab;i2 j2 i3 j3 (ξ1) dξ1. (2.25)

On the other hand, the first term of the inner product is computed with a slight variation of (2.23)–(2.25),
but with no derivative and without multiplying the integrand by Dab, therefore dropping indices a, b.

Ḡ
grad A
i3 j3 (ξ1, ξ2) :=

1

∫
0

χi3 (ξ3)χj3 (ξ3)|J(ξ1, ξ2, ξ3)| dξ3, (2.26)

Ḡ
grad B
i2 j2 i3 j3 (ξ1) :=

1

∫
0

χi2 (ξ2)χj2 (ξ2)Ḡ
grad A
i3 j3 (ξ1, ξ2) dξ2, (2.27)

Ḡ
grad
i1 j1 i2 j2 i3 j3 :=

1

∫
0

χi1 (ξ1)χj1 (ξ1)Ḡ
grad B
i2 j2 i3 j3 (ξ1) dξ1. (2.28)

The addition of the two parts described above yields

GgradIJ = Ḡ
grad
i1 j1 i2 j2 i3 j3 +

3
∑
a,b=1

G
grad
ab;i1 j1 i2 j2 i3 j3 .

Given the auxiliary functions’ definitions for this Grammatrix, some symmetries are possible to be iden-
tified so that many extra computations may be avoided.

G
grad A
ab;i3 j3 = G

grad A
ba;j3 i3 for all indices,

G
grad
ab;i1 j1 i2 j2 i3 j3 = G

grad
ba;j1 i1 j2 i2 j3 i3 for all indices,

Ḡ
grad A
i3 j3 = Ḡ

grad A
j3 i3 for all indices,

Ḡ
grad B
i2 j2 i3 j3 = Ḡ

grad B
j2 i2 i3 j3 = Ḡ

grad B
i2 j2 j3 i3 for all indices,

Ḡ
grad
i1 j1 i2 j2 i3 j3 = Ḡ

grad
j1 i1 i2 j2 i3 j3 = Ḡ

grad
i1 j1 j2 i2 i3 j3 = Ḡ

grad
i1 j1 i2 j2 j3 i3 for all indices.

Having in mind the relations above, along with (2.23)–(2.28), we propose Algorithm 5 as the tensor-
product-basedmethod to compute the H1 Grammatrix, in which a one-dimensional quadrature is applied to
every coordinate, as seen in (2.15)–(2.17).

If a uniformorder p is assumed inAlgorithm5,weneed at least L = p + 1 for the integration, so the reader
may estimate the operation count by summing the number of times the code line that accumulates Gi1 j1 i2 j2 i3 j3
and verify that it is O[(p + 1)7], two orders of magnitude below Algorithm 4.

2.5 Space H(div)

This third space contains functions whose divergence is square integrable, i.e.,

H(div,K) = {V ∈ L2(K) : div V ∈ L2(K)}.

536 | J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization

procedure H1GramTensor(iel , Ggrad) ⊳ Get Ggrad for element No. iel – Sum factorization
pmax ← max{p1, p2, p3}
call setquadrature1D(iel , pmax; L, {ζ l , wl})
Ḡgrad, Ggrad ← 0 ⊳ Initialize Gram matrix
for l = 1 to L do

call Shape1H1(ζ l , p1; {χi1 (ζ l), χi1 (ζ
l)}) ⊳ Evaluate 1D shape functions at ζ l

for j3 = 0 to p3 do
for i3 = j3 to p3 do

Ḡgrad B , Ggrad B ← 0
for m = 1 to L do

call Shape1H1(ζm , p2; {χi2 (ζm), χi2 (ζ
m)}) ⊳ Evaluate 1D shape functions at ζm

Ḡgrad A , Ggrad A ← 0
for n = 1 to L do

call Shape1H1(ζ n , p3; {χi3 (ζ n), χi3 (ζ
n)}) ⊳ Evaluate 1D shape functions at ζ n

ξ lmn ← (ζ l , ζm , ζ n)
call geometry(ξ lmn , iel;x, J(ξ lmn), J−1(ξ lmn), |J|) ⊳ Compute x and Jacobian
D← J−1(ξ lmn)J−T(ξ lmn)
Ḡ
grad A
i3 j3 ← Ḡ

grad A
i3 j3 + χi3 (ζ

n)χj3 (ζ n)|J|wn ⊳ Accumulate to obtain (2.26)
for a, b = 1 to 3 do

G
grad A
ab;i3 j3 ← G

grad A
ab;i3 j3 + χ

⟨δ3a⟩
i3 (ζ

n)χ⟨δ3b⟩j3 Dab(ζ n)|J|wn ⊳ Accumulate to obtain (2.23)

for j2, i2 = 0 to p2 do
Ḡ
grad B
i2 j2 i3 j3 ← Ḡ

grad B
i2 j2 i3 j3 + χi2 (ζ

m)χj2 (ζm)Ḡ
grad A
i3 j3 (ζ

l , ζm)wm ⊳ By (2.27)
for a, b = 1 to 3 do

G
grad B
ab;i2 j2 i3 j3 ← G

grad B
ab;i2 j2 i3 j3 + χ

⟨δ2a⟩
i2 (ζ

m)χ⟨δ2b⟩j2 (ζ
m)Ggrad Aab;i3 j3 (ζ

l , ζm)wm ⊳ By (2.24)

for j2, i2 = 0 to p2 do
for j1, i1 = 0 to p1 do

I = i1 + (p1 + 1)i2 + (p1 + 1)(p2 + 1)i3
J = j1 + (p1 + 1)j2 + (p1 + 1)(p2 + 1)j3
if J ≥ I then

Ḡ
grad
i1 j1 i2 j2 i3 j3 ← Ḡ

grad
i1 j1 i2 j2 i3 j3 + χi1 (ζ

l)χj1 (ζ l)Ḡ
grad B
i2 j2 i3 j3 (ζ

l)wl ⊳ (2.28)
for a, b = 1 to 3 do

G
grad
ab;i1 j1 i2 j2 i3 j3 ← G

grad
ab;i1 j1 i2 j2 i3 j3 + χ

⟨δ1a⟩
i1 (ζ

l)χ⟨δ1b⟩j1 (ζ
l)Ggrad Bab;i2 j2 i3 j3 (ζ

l)wl ⊳ (2.25)

return Ggrad

Algorithm 5: Computation of the H1 Gram matrix by sum factorization.

The corresponding inner product is

(V,W)H(div,K) := (V,W)K + (div V, divW)K for all V,W ∈ H(div,K),

where the spatial-coordinates divergence is

div V = ∂1V1 + ∂2V2 + ∂3V3.

Furthermore, the divergence in the master element coordinates of a function Ŵ is

d̂iv Ŵ = ̂∂1Ŵ1 + ̂∂2Ŵ2 + ̂∂3Ŵ3.

In a similar way to the previous problem, we have that if V ∈ H(div,K) (and by definition div V ∈ L2(K)),
if V = TdivV̂ for some V̂ ∈ H(div, K̂) (with d̂iv V̂ ∈ L2(K̂)), then div V = T d̂iv V̂ thanks to another commuta-
tivity that holds for this space, div Tdiv = T d̂iv.

J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization | 537

Now let the order of the shape functions for the master hexahedron be (p1, p2, p3), in the sense of the
exact sequence (2.7). Consider a basis for Vp, {ϑI}dim Vp−1

I=0 , where

dim Vp = (p1 + 1)p2p3 + (p2 + 1)p3p1 + (p3 + 1)p1p2.

Central to the understanding of this third space is to remind that its elements are vector-valued functions.
As in the H1 case, the definitions of both Tdiv and T need to be invoked in (2.29). With this in mind, we take
the same steps as above to achieve an expression suitable for sum factorization on the H(div) Gram matrix,
below denoted Gdiv. Thus, for any pair of integers 0 ≤ I, J < dim Vp, the inner product is obtained as follows:

GdivIJ = (ϑI , ϑJ)H(div,K)

= ∫
K

ϑI(x)TϑJ(x) d3x + ∫
K

div ϑI(x)div ϑJ(x) d3x

= ∫

K̂

[ϑI ∘ xK(ξ)]T[ϑJ ∘ xK(ξ)]|J(ξ)| d3ξ + ∫
K̂

div ϑI ∘ xK(ξ)div ϑJ ∘ xK(ξ)|J(ξ)| d3ξ

= ∫

K̂

[Tdiv ̂ϑI ∘ xK(ξ)]T[Tdiv ̂ϑJ ∘ xK(ξ)]|J(ξ)| d3ξ

+ ∫

K̂

[div(Tdiv ̂ϑI) ∘ xK(ξ)][div(Tdiv ̂ϑJ) ∘ xK(ξ)]|J(ξ)| d3ξ

= ∫

K̂

[(|J|−1J ̂ϑI ∘ x−1K) ∘ xK(ξ)]
T[(|J|−1J ̂ϑJ ∘ x−1K) ∘ xK(ξ)]|J(ξ)| d

3ξ

+ ∫

K̂

[(T d̂iv ̂ϑI) ∘ xK(ξ)][(T d̂iv ̂ϑJ) ∘ xK(ξ)]|J(ξ)| d3ξ

= ∫

K̂

̂ϑI(ξ)TC(ξ) ̂ϑJ(ξ)|J−1(ξ)| d3ξ

+ ∫

K̂

[((|J|−1 d̂iv ̂ϑI) ∘ x−1K) ∘ xK(ξ)][((|J|
−1 d̂iv ̂ϑJ) ∘ x−1K) ∘ xK(ξ)]|J(ξ)| d

3ξ

= ∫

K̂

̂ϑI(ξ)TC(ξ) ̂ϑJ(ξ)|J(ξ)|−1 d3ξ + ∫
K̂

d̂iv ̂ϑI(ξ) d̂iv ̂ϑJ(ξ)|J(ξ)|−1 d3ξ

=
1

∫
0

1

∫
0

1

∫
0

{ ̂ϑI(ξ)TC(ξ) ̂ϑJ(ξ) + d̂iv ̂ϑI(ξ) d̂iv ̂ϑJ(ξ)}|J(ξ)|−1 dξ3 dξ2 dξ1, (2.29)

where C := JTJ = (J−1J−T)−1 = D−1 contains the following entries:

C =(
C11 C12 C13
C21 C22 C23
C31 C32 C33

)

with C12 = C21, C13 = C31, C32 = C23, and every entry depends on ξ . The conventional algorithm for (2.29)
is presented as Algorithm 6.

The sum factorization process for the present situation begins by defining a tensor-product shape func-
tion. As ̂ϑI , ̂ϑI ∈ V̂p = Qp1 ,p2−1,p3−1(I3) × Qp1−1,p2 ,p3−1(I3) × Qp1−1,p2−1,p3 (I3), it follows that

̂ϑI(ξ1, ξ2, ξ3) = μa,1;i1 (ξ1)μa,2;i2 (ξ2)μa,3;i3 (ξ3)êa ,
̂ϑJ(ξ1, ξ2, ξ3) = μb,1;j1 (ξ1)μb,2;j2 (ξ2)μb,3;j3 (ξ3)êb ,

(2.30)

where êa, a = 1, 2, 3, is the a-th canonical Cartesian unit vector in the master space; the univariate polyno-
mials μa,d;id (ξd), d = 1, 2, 3, are determined through the rule

μa,d;id =
{
{
{

χid if a = d,
νid otherwise.

(2.31)

538 | J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization

procedure HdivGram(iel , Gdiv) ⊳ Compute matrix Gdiv for element No. iel – Conventional algorithm
call setquadrature3D(iel , p1, p2, p3; L, {ξ lmn , wlmn})
Gdiv ← 0 ⊳ Initialize Gram matrix
for l,m, n = 1 to L do

call Shape3Hdiv(ξ lmn , p1, p2, p3; { ̂ϑI(ξ lmn)}, {d̂iv ̂ϑI(ξ lmn)}) ⊳ 3D shape functions at ξ lmn
call geometry(ξ lmn , iel;x, J(ξ lmn), J−1(ξ lmn), |J|) ⊳ Compute x and Jacobian
C← JT(ξ lmn)J(ξ lmn)
for J = 0 to dim Vp − 1 do

for I = J to dim Vp − 1 do
GdivIJ ← GdivIJ + { ̂ϑI(ξ lmn)TC ̂ϑJ(ξ lmn) + d̂iv ̂ϑI(ξ lmn) d̂iv ̂ϑJ(ξ lmn)}|J|−1wlmn

return Gdiv

Algorithm 6: Conventional computation of the H(div) Gram matrix.

where it is recalled that {χia }
pa
ia=0 are a hierarchical basis of Wpa

I , while {νia }
pa−1
ia=0 form a basis for YpaI (for

a = 1, 2, 3). In this new scenario, the integer indices ia , ja depend on the vector component where ̂ϑI lies.
The correspondence formula between the tensor-product index I and the one-dimensional ones could be of
the form

I =
{{{
{{{
{

i1 + (p1 + 1)i2 + (p1 + 1)p2i3 if a = 1,
(p1 + 1)p2p3 + i1 + p1i2 + p1(p2 + 1)i3 if a = 2,
(p1 + 1)p2p3 + p1(p2 + 1)p3 + i1 + p1i2 + p1p2i3 if a = 3.

(2.32)

Furthermore, it should be acknowledged that if {χia }
pa
ia=0 is a hierarchical basis of P

pa (I), then {χia }
pa
ia=1 is

a hierarchical basis of Ppa−1(I) = YpaI . We can therefore use this basis by letting

νid = χid+1 for id = 0, . . . , pd − 1, (2.33)

having pd = p1, p2, p3.
By combining (2.30), (2.31) and (2.33), the tensor-product H(div) shape functions and its master-

coordinate divergence can be rewritten as

̂ϑI(ξ1, ξ2, ξ3) = χia (ξa)χia+1+1(ξa+1)χ

ia+2+1(ξa+2)êa , (2.34)

d̂iv ̂ϑI(ξ1, ξ2, ξ3) = χia (ξa)χ

ia+1+1(ξa+1)χ

ia+2+1(ξa+2) (2.35)

with 0 ≤ ia ≤ pa, 0 ≤ ia+1 < pa+1, 0 ≤ ia+2 < pa+2, where a = 1, 2, 3 and the indices (a, a + 1, a + 2) are inter-
preted as a cyclic permutation of (1, 2, 3).

Notice that if we introduce an additional identifier to the index,we can restate the shape function in terms
of (ξ1, ξ2, ξ3), which is desirable before the integral nesting of the tensor-product-based algorithm. As above,
a Kronecker delta associated to the vector component where the shape function lies can do that work for us.
But in this case, as seen in (2.34), we require the derivative in the factors depending on the coordinates other
than ξa, so we need a complement of the Kronecker delta. For that purpose we make a new definition:

γcd = 1 − δcd for c, d = 1, 2, 3.

Additionally, the notation convention to know if we need χ or its derivative turns again useful. Making
use of (2.22) jointly with the Kronecker delta complement for the index, we can obtain new equations for ̂ϑI
and d̂iv ̂ϑI , for which the effect of (the component index) a on each univariate polynomial is obtained more
systematically than in (2.34) and (2.35), respectively.

̂ϑI(ξ1, ξ2, ξ3) = χ
⟨γ1a⟩
i1+γ1a (ξ1)χ

⟨γ2a⟩
i2+γ2a (ξ2)χ

⟨γ3a⟩
i3+γ3a (ξ3)êa , (2.36)

d̂iv ̂ϑI(ξ1, ξ2, ξ3) = χi1+γ1a (ξ1)χ

i2+γ2a (ξ2)χ

i3+γ3a (ξ3). (2.37)

J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization | 539

Using (2.37) in the second term of the Gram matrix entry derived in (2.29), we get to

∫

K̂

d̂iv ̂ϑI d̂iv ̂ϑJ |J|−1 d3ξ = ∫
K̂

χi1+γ1a χ

i2+γ2a χ

i3+γ3a χ

j1+γ1b χ

j2+γ2b χ

j3+γ3b |J|

−1 d3ξ , (2.38)

which, due to (2.33), is indeed an L2 inner product just as in (2.11). Notice that in (2.38) we abolished the
writing of arguments in order to shorten the number of symbols present, but it clearly holds that each univari-
ate shape function is dependent on the ξ component with its same index. As we have presented an algorithm
for this type of integral, let us focus on the first term of (2.29) instead, and we will later incorporate both of
them in a single algorithm.

Take (2.36) as a representation of the H(div) shape functions ̂ϑI , ̂ϑJ . Insert this representation into the
first term of (2.29), and rearrange in 1D integrals to obtain a nested integral

∫

K̂

̂ϑTI C ̂ϑJ |J|
−1 d3ξ = ∫

K̂

χ⟨γ1a⟩i1+γ1a χ
⟨γ2a⟩
i2+γ2a χ

⟨γ3a⟩
i3+γ3a ê

T
aCχ
⟨γ1b⟩
j1+γ1b χ

⟨γ2b⟩
j2+γ2b χ

⟨γ3b⟩
j3+γ3b êb|J|

−1 d3ξ

=
1

∫
0

χ⟨γ1a⟩i1+γ1a χ
⟨γ1b⟩
j1+γ1b{

1

∫
0

χ⟨γ2a⟩i2+γ2a χ
⟨γ2b⟩
j2+γ2b[

1

∫
0

χ⟨γ3a⟩i3+γ3a χ
⟨γ3b⟩
j3+γ3bCab|J|

−1 dξ3] dξ2} dξ1,

where we have used the fact that êTaCêb = Cab.
This is where the corresponding auxiliary functions for H(div) are introduced.

Gdiv Aab;i3 j3 (ξ1, ξ2) :=
1

∫
0

χ⟨γ3a⟩i3+γ3a (ξ3)χ
⟨γ3b⟩
j3+γ3b (ξ3)Cab(ξ1, ξ2, ξ3)|J(ξ1, ξ2, ξ3)|

−1 dξ3, (2.39)

Gdiv Bab;i2 j2 i3 j3 (ξ1) :=
1

∫
0

χ⟨γ2a⟩i2+γ2a (ξ2)χ
⟨γ2b⟩
j2+γ2b (ξ2)G

div A
ab;i3 j3 (ξ1, ξ2) dξ2, (2.40)

Gdivab;i1 j1 i2 j2 i3 j3 :=
1

∫
0

χ⟨γ1a⟩i1+γ1a (ξ1)χ
⟨γ1b⟩
j1+γ1b (ξ1)G

div B
ab;i2 j2 i3 j3 (ξ1) dξ1. (2.41)

In these newly defined auxiliary function arrays for the first term of the H(div) Gram matrix, some sym-
metries arise as well as they did in the L2 and H1 cases. We do not explicitly state them now, but the reader
is encouraged to explore such properties, having as a main criterion the fact that the Grammatrix as a whole
is symmetric.

Recall that the second term of the inner product, written in tensor-product form in (2.38), must be added
to (2.41). The calculation of that term is practically a copy of Algorithm 2, but some caution has to be taken
with the indices. We will denote those slightly modified auxiliary arrays G̃div A , G̃div B , G̃div. Next, by imple-
menting a 1D quadrature for the approximation of each auxiliary function (2.39)–(2.41), similar to those in
(2.15)–(2.17), we get the third sum factorization algorithm for the computation of a hexahedral element’s
Gram matrix, Algorithm 7.

2.6 Space H(curl)

The last energy space needs its functions to have a square-integrable curl. It is defined as

H(curl,K) = {E ∈ L2(K) : curl E ∈ L2(K)}.

The inner product for this space is

(E, F)H(curl,K) := (E, F)K + (curl E, curl F)K for all E, F ∈ H(curl,K).

In this definition, the curl is given by

curl E = (∂2E3 − ∂3E2, ∂3E1 − ∂1E3, ∂1E2 − ∂2E1).

540 | J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization

procedure HdivGramTensor(iel , Gdiv) ⊳ Gdiv for element No. iel – Sum factorization
pmax ← max{p1, p2, p3}
call setquadrature1D(iel , pmax; L, {ζ l , wl})
Gdiv, G̃div ← 0 ⊳ Initialize Gram matrix
for l = 1 to L do

call Shape1H1(ζ l , p1; {χi1 (ζ l), χi1 (ζ
l)}) ⊳ Evaluate 1D shape functions at ζ l

for j3 = 0 to p3 do
for i3 = j3 to p3 do

Gdiv B , G̃div B ← 0
for m = 1 to L do

call Shape1H1(ζm , p2; {χi2 (ζm), χi2 (ζ
m)}) ⊳ Evaluate 1D shape functions at ζm

Gdiv A , G̃div A ← 0
for n = 1 to L do

call Shape1H1(ζ n , p3; {χi3 (ζ n), χi3 (ζ
n)}) ⊳ Evaluate 1D shape functions at ζ n

ξ lmn ← (ζ l , ζm , ζ n)
call geometry(ξ lmn , iel;x, J(ξ lmn), J−1(ξ lmn), |J|) ⊳ Compute x and Jacobian
C← JT(ξ lmn)J(ξ lmn)
for a, b = 1 to 3 do

if j3 + γ3b ≤ p3 and i3 + γ3a ≤ p3 then ⊳ Avoids extra computations
Gdiv Aab;i3 j3 ← Gdiv Aab;i3 j3 + χ

⟨γ3a⟩
i3+γ3a (ζ

n)χ⟨γ3b⟩j3+γ3b (ζ
n)Cab|J|−1wn ⊳ To obtain (2.39)

G̃div Aab;i3 j3 ← G̃div Aab;i3 j3 + χ

i3+γ3a (ζ

n)χj3+γ3b (ζ
n)|J|−1wn

for j2, i2 = 0 to p2 do
for a, b = 1 to 3 do

if j2 + γ2b ≤ p2 and i2 + γ2a ≤ p2 then ⊳ Avoids extra computations
Gdiv Bab;i2 j2 i3 j3 ← Gdiv Bab;i2 j2 i3 j3 + χ

⟨γ2a⟩
i2+γ2a (ζ

m)χ⟨γ2b⟩j2+γ2b (ζ
m)Gdiv Aab;i3 j3w

m ⊳ (2.40)
G̃div Bab;i2 j2 i3 j3 ← G̃div Bab;i2 j2 i3 j3 + χ

i2+γ2a (ζ

m)χj2+γ2b (ζ
m)G̃div Aab;i3 j3w

m

for j2, i2 = 0 to p2 do
for j1, i1 = 0 to p1 do

Determine I, J through (2.32)
if J ≥ I then

for a, b = 1 to 3 do
if j1 + γ1b ≤ p1 and i1 + γ1a ≤ p1 then ⊳ Avoids extra computations

Gdivab;i1 j1 i2 j2 i3 j3 ← Gdivab;i1 j1 i2 j2 i3 j3 + χ
⟨γ1a⟩
i1+γ1a (ζ

l)χ⟨γ1b⟩j1+γ1b (ζ
l)Gdiv Bab;i2 j2 i3 j3w

l

G̃divab;i1 j1 i2 j2 i3 j3 ← G̃divab;i1 j1 i2 j2 i3 j3 + χ

i1+γ1a (ζ

l)χj1+γ1b (ζ
l)G̃Bab;i2 j2 i3 j3w

l

return Gdiv

Algorithm 7: Computation of the H(div) Gram matrix by sum factorization.

Its counterpart in master coordinates is

ĉurl ̂F = (̂∂2 ̂F3 − ̂∂3 ̂F2, ̂∂3 ̂F1 − ̂∂1 ̂F3, ̂∂1 ̂F2 − ̂∂2 ̂F1).

In this last space, the commutativity that is applicable to our derivations is given by curl Tcurl = Tdiv ĉurl.
Now let the order of the shape functions for the master hexahedron be (p1, p2, p3), in the sense of the

exact sequence (2.7). Consider a basis for Qp, {ψI}dimQp−1
I=0 , where

dimQp = p1(p2 + 1)(p3 + 1) + (p1 + 1)p2(p3 + 1) + (p1 + 1)(p2 + 1)p3.

In this fourth energy space, the elements are vector-valued functions too. As in the H1 and H(div) cases, the
definitions of both Tcurl and Tdiv need to be invoked during the derivation of (2.42). Taking in consideration
the previous problems, we take the same steps in order to obtain an expression suitable for the sum factor-

J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization | 541

ization of the H(curl) Gram matrix, hereinafter called Gcurl. Thus, for any pair of integers 0 ≤ I, J < dimQp,
the inner product is equivalent to the following expressions:

GcurlIJ = (ψI , ψJ)H(curl,K)

= ∫
K

ψI(x)TψJ(x) d3x + ∫
K

[curlψI(x)]T[curlψJ(x)] d3x

= ∫

K̂

[ψI ∘ xK(ξ)]T[ψJ ∘ xK(ξ)]|J(ξ)| d3ξ + ∫
K̂

[curlψI ∘ xK(ξ)]T[curlψJ ∘ xK(ξ)]|J(ξ)| d3ξ

= ∫

K̂

[Tcurlψ̂I ∘ xK(ξ)]T[Tcurlψ̂J ∘ xK(ξ)]|J(ξ)| d3ξ

+ ∫

K̂

[curl(Tcurlψ̂I) ∘ xK(ξ)]T[curl(Tcurlψ̂J) ∘ xK(ξ)]|J(ξ)| d3ξ

= ∫

K̂

[(J−T ψ̂I ∘ x−1K) ∘ xK(ξ)]
T[(J−T ψ̂J ∘ x−1K) ∘ xK(ξ)]|J(ξ)| d

3ξ

+ ∫

K̂

[(Tdiv ĉurl ψ̂I) ∘ xK(ξ)]T[(Tdiv ĉurl ψ̂J) ∘ xK(ξ)]|J(ξ)| d3ξ

= ∫

K̂

ψ̂I(ξ)TD(ξ)ψ̂J(ξ)|J(ξ)| d3ξ

+ ∫

K̂

[((|J|−1J ĉurl ψ̂I) ∘ x−1K) ∘ xK(ξ)]
T[((|J|−1J ĉurl ψ̂J) ∘ x−1K) ∘ xK(ξ)]|J(ξ)| d

3ξ

= ∫

K̂

ψ̂I(ξ)TD(ξ)ψ̂J(ξ)|J(ξ)| d3ξ + ∫
K̂

[ĉurl ψ̂I(ξ)]TC(ξ)[ĉurl ψ̂J(ξ)]|J(ξ)|−1 d3ξ

=
1

∫
0

1

∫
0

1

∫
0

{ψ̂I(ξ)TD(ξ)ψ̂J(ξ)|J(ξ)| + [ĉurl ψ̂I(ξ)]TC(ξ)[ĉurl ψ̂J(ξ)]|J(ξ)|−1} dξ3 dξ2 dξ1. (2.42)

With the assumption that a 3D finite element code enabled for H(curl) shape functions has the ĉurl operation
incorporated, the conventional algorithm for (2.42) is presented as Algorithm 8.

Now we proceed to define a tensor-product shape function for this energy space. As

ψ̂I , ψ̂I ∈ Q̂p = Qp1−1,p2 ,p3 (I3) × Qp1 ,p2−1,p3 (I3) × Qp1 ,p2 ,p3−1(I3),

it follows that
ψ̂I(ξ1, ξ2, ξ3) = ρa,1;i1 (ξ1)ρa,2;i2 (ξ2)ρa,3;i3 (ξ3)êa ,

ψ̂J(ξ1, ξ2, ξ3) = ρb,1;j1 (ξ1)ρb,2;j2 (ξ2)ρb,3;j3 (ξ3)êb ,

where êa, a = 1, 2, 3, is the a-th canonical Cartesian unit vector in the master space; the univariate polyno-
mials ρa,d;id (ξd), d = 1, 2, 3, are determined through the rule

ρa,d;id =
{
{
{

νid if a = d,
χid otherwise.

(2.43)

Also here the values that the integer indices ia , ja may take depend on the vector component where ψ̂I
lies (a). The correspondence formula between the tensor-product index I and the one-dimensional ones could
be of the form

I =

{{{{{{
{{{{{{
{

i1 + p1i2 + p1(p2 + 1)i3 if a = 1,
p1(p2 + 1)(p3 + 1) + i1 + (p1 + 1)i2 + (p1 + 1)p2i3 if a = 2,
p1(p2 + 1)(p3 + 1) + (p1 + 1)p2(p3 + 1)
+i1 + (p1 + 1)i2 + (p1 + 1)(p2 + 1)i3 if a = 3.

(2.44)

542 | J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization

procedure HcurlGram(iel , Gcurl) ⊳ Compute matrix Gcurl for element No. iel – Conventional algorithm
call setquadrature3D(iel , p1, p2, p3; L, {ξ lmn , wlmn})
Gcurl ← 0 ⊳ Initialize Gram matrix
for l,m, n = 1 to L do

call Shape3Hcurl(ξ lmn , p1, p2, p3; {ψ̂I(ξ lmn)}, {ĉurl ψ̂I(ξ lmn)}) ⊳ 3D shape functions at ξ lmn
call geometry(ξ lmn , iel;x, J(ξ lmn), J−1(ξ lmn), |J|) ⊳ Compute x and Jacobian
D← J−1(ξ lmn)J−T(ξ lmn)
C← JT(ξ lmn)J(ξ lmn)
for J = 0 to dimQp − 1 do

for I = J to dimQp − 1 do
GcurlIJ ← GcurlIJ + {ψ̂I(ξ lmn)TDψ̂J(ξ lmn)|J| + [ĉurl ψ̂I(ξ lmn)]TC[ĉurl ̂ϑJ(ξ lmn)]|J|−1}wlmn

return Gcurl

Algorithm 8: Conventional computation of the H(curl) Gram matrix.

Perhaps it becomes clear by rewriting ψ̂I using (2.43) just like it was done in the H(div) problem,

ψ̂I(ξ1, ξ2, ξ3) = νia (ξa)χia+1 (ξa+1)χia+2 (ξa+2)êa
= χia+1(ξa)χia+1 (ξa+1)χia+2 (ξa+2)êa , (2.45)

where the relation between ν and χ, (2.33), was applied. Moreover, the curl operator is the most complicated
case of all in this section. Firstly, instead of using explicit indices 1, 2, 3, we can write the result of this oper-
ator having as a reference the component index a in ψ̂I and making use of the cyclic permutation concept
shown above.

ĉurl ψ̂I = [∂a+1(ψ̂I)a+2 − ∂a+2(ψ̂I)a+1]êa
+ [∂a+2(ψ̂I)a − ∂a(ψ̂I)a+2]êa+1
+ [∂a(ψ̂I)a+1 − ∂a+1(ψ̂I)a]êa+2

= ∂a+2(ψ̂I)aêa+1 − ∂a+1(ψ̂I)aêa+2
= χia+1 χia+1 χ

ia+2 êa+1 − χ

ia+1χ

ia+1 χia+2 êa+2. (2.46)

Now, using the Kronecker delta as a means to manage the superscript (2.22) and the subindex where
we need ia + 1 instead of just ia, and introducing this into (2.45), (2.46), we can write ψ̂I and its curl in an
appropriate form to perform the nesting of integrals of (2.42).

ψ̂I(ξ1, ξ2, ξ3) = χ⟨δ1a⟩i1+δ1a (ξ1)χ
⟨δ2a⟩
i2+δ2a (ξ2)χ

⟨δ3a⟩
i3+δ3a (ξ3)êa , (2.47)

ĉurl ψ̂I(ξ1, ξ2, ξ3) = χ
⟨γ1(a+1)⟩
i1+δ1a (ξ1)χ

⟨γ2(a+1)⟩
i2+δ2a (ξ2)χ

⟨γ3(a+1)⟩
i3+δ3a (ξ3)êa+1

− χ⟨γ1(a+2)⟩i1+δ1a (ξ1)χ
⟨γ2(a+2)⟩
i2+δ2a (ξ2)χ

⟨γ3(a+2)⟩
i3+δ3a (ξ3)êa+2. (2.48)

By applying (2.47) and (2.48) to the first and second terms of (2.42), respectively, we converge to a def-
inite expression that we can finally implement for the computation of the Gram matrix entry GcurlIJ . Putting
aside momentarily the |J| factors, we have the following equations for each term:

ψ̂I(ξ)TD(ξ)ψ̂J(ξ) = χ⟨δ1a⟩i1+δ1a (ξ1)χ
⟨δ1b⟩
j1+δ1b (ξ1)χ

⟨δ2a⟩
i2+δ2a (ξ2)χ

⟨δ2b⟩
j2+δ2b (ξ2)χ

⟨δ3a⟩
i3+δ3a (ξ3)χ

⟨δ3b⟩
j3+δ3b (ξ3)ê

T
aD(ξ)êb , (2.49)

[ĉurl ψ̂I]TC[ĉurl ψ̂J] = χ
⟨γ1(a+1)⟩
i1+δ1a χ⟨γ1(b+1)⟩j1+δ1b χ⟨γ2(a+1)⟩i2+δ2a χ⟨γ2(b+1)⟩j2+δ2b χ⟨γ3(a+1)⟩i3+δ3a χ⟨γ3(b+1)⟩j3+δ3b êTa+1Cêb+1

− χ⟨γ1(a+2)⟩i1+δ1a χ⟨γ1(b+1)⟩j1+δ1b χ⟨γ2(a+2)⟩i2+δ2a χ⟨γ2(b+1)⟩j2+δ2b χ⟨γ3(a+2)⟩i3+δ3a χ⟨γ3(b+1)⟩j3+δ3b êTa+2Cêb+1

− χ⟨γ1(a+1)⟩i1+δ1a χ⟨γ1(b+2)⟩j1+δ1b χ⟨γ2(a+1)⟩i2+δ2a χ⟨γ2(b+2)⟩j2+δ2b χ⟨γ3(a+1)⟩i3+δ3a χ⟨γ3(b+2)⟩j3+δ3b êTa+1Cêb+2

+ χ⟨γ1(a+2)⟩i1+δ1a χ⟨γ1(b+2)⟩j1+δ1b χ⟨γ2(a+2)⟩i2+δ2a χ⟨γ2(b+2)⟩j2+δ2b χ⟨γ3(a+2)⟩i3+δ3a χ⟨γ3(b+2)⟩j3+δ3b êTa+2Cêb+2.

J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization | 543

Note that, in the second equation, the arguments were omitted for practical reasons, but it is easy to
determine what is the argument of each univariate polynomial by comparing to (2.49). We can further recall
that êTaD(ξ)êb = Dab, êTa+1Cêb+1 = C(a+1)(b+1), and similarlywe can retrieve C(a+2)(b+1), C(a+1)(b+2), C(a+2)(b+2).
The second term of the Gram matrix is more intricate as it comprises four subterms, each of which needs to
be computed separately. However, it is possible to generalize the definition of the auxiliary functions adding
a new pair of indices. Then let

G
curl A;αβ
ab;i3 j3 (ξ1, ξ2) =

1

∫
0

χ⟨γ3(a+α)⟩i3+δ3a (ξ3)χ
⟨γ3(b+β)⟩
j3+δ3b (ξ3)C(a+α)(b+β)(ξ1, ξ2, ξ3)|J(ξ1, ξ2, ξ3)|

−1 dξ3, (2.50)

G
curl B;αβ
ab;i2 j2 i3 j3 (ξ1) =

1

∫
0

χ⟨γ2(a+α)⟩i2+δ2a (ξ2)χ
⟨γ2(b+β)⟩
j2+δ2b (ξ2)G

curl A;αβ
ab;i3 j3 (ξ1, ξ2) dξ2, (2.51)

G
curl;αβ
ab;i1 j1 i2 j2 i3 j3 =

1

∫
0

χ⟨γ1(a+α)⟩i1+δ1a (ξ1)χ
⟨γ1(b+β)⟩
j1+δ1b (ξ1)G

curl B;αβ
ab;i2 j2 i3 j3 (ξ1) dξ1, (2.52)

where α, β = 1, 2. In the same fashion, for the first term, the auxiliary functions are

Ǧcurl Aab;i3 j3 (ξ1, ξ2) =
1

∫
0

χ⟨δ3a⟩i3+δ3a (ξ3)χ
⟨δ3b⟩
j3+δ3b (ξ3)Dab(ξ1, ξ2, ξ3) |J(ξ1, ξ2, ξ3)| dξ3, (2.53)

Ǧcurl Bab;i2 j2 i3 j3 (ξ1) =
1

∫
0

χ⟨δ2a⟩i2+δ2a (ξ2)χ
⟨δ2b⟩
j2+δ2b (ξ2)Ǧ

curl A
ab;i3 j3 (ξ1, ξ2) dξ2, (2.54)

Ǧcurlab;i1 j1 i2 j2 i3 j3 =
1

∫
0

χ⟨δ1a⟩i1+δ1a (ξ1)χ
⟨δ1b⟩
j1+δ1b (ξ1)Ǧ

curl B
ab;i2 j2 i3 j3 (ξ1) dξ1. (2.55)

Finally, every Gram matrix entry is computed as

GcurlIJ = Ǧ
curl
ab;i1 j1 i2 j2 i3 j3 +

2
∑
α,β=1
(−1)α+βGcurl;αβab;i1 j1 i2 j2 i3 j3 . (2.56)

Algorithm 9 implements (2.50)–(2.56) using one-dimensional numerical integration for each auxiliary
function. If we have a uniform-degree polynomial space (in the sense of the exact sequence), then this algo-
rithm has a complexity of O[p3(p + 1)4] ∼ O(p7), whereas Algorithm 8 accounts for O[p5(p + 1)4] ∼ O(p9),
assuming we use L = p quadrature points.

2.7 Use of Legendre Polynomials

Legendre polynomials are a family of hierarchical and L2 orthogonal polynomials defined over the interval
[−1, 1]with the average zero property (except the constant function corresponding to0-th degree). By shifting
the polynomial argument, we can keep all those properties over the interval [0, 1]. We are denoting by Pi the
i-th-degree Legendre polynomial with i = 0, 1, 2, Just by defining the first two members of the set along
with a recursion formula, we can obtain all of the Legendre polynomial family over [0, 1].

P0(ξ) = 1,

P1(ξ) = 2ξ − 1,

iPi(ξ) = (2i − 1)(2ξ − 1)Pi−1(ξ) − (i − 1)Pi−2(ξ), i ≥ 2. (2.57)

In (2.57), the recursion formula is built such that Pi(1) = 1 for every non-negative i.

544 | J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization

procedure HcurlGramTensor(iel , Gcurl) ⊳ Gcurl for element No. iel - Sum factorization
pmax ← max{p1, p2, p3}
call setquadrature1D(iel , pmax; L, {ζ l , wl})
Ǧcurl, Gcurl ← 0 ⊳ Initialize Gram matrix
for l = 1 to L do

call Shape1H1(ζ l , p1; {χi1 (ζ l), χi1 (ζ
l)}) ⊳ Evaluate 1D shape functions at ζ l

for j3, i3 = 0 to p3 do
Ǧcurl B , Gcurl B ← 0
for m = 1 to L do

call Shape1H1(ζm , p2; {χi2 (ζm), χi2 (ζ
m)}) ⊳ Evaluate 1D shape functions at ζm

Ǧcurl A , Gcurl A ← 0
for n = 1 to L do

call Shape1H1(ζ n , p3; {χi3 (ζ n), χi3 (ζ
n)}) ⊳ Evaluate 1D shape functions at ζ n

ξ lmn ← (ζ l , ζm , ζ n)
call geometry(ξ lmn , iel;x, J(ξ lmn), J−1(ξ lmn), |J|) ⊳ Compute x and Jacobian
D← J−1(ξ lmn)J−T(ξ lmn)
C← JT(ξ lmn)J(ξ lmn)
for a, b = 1 to 3 do

if j3 + δ3b ≤ p3 and i3 + δ3a ≤ p3 then ⊳ Avoids extra computations
Ǧcurl Aab;i3 j3 ← Ǧcurl Aab;i3 j3 + χ

⟨δ3a⟩
i3+δ3a (ζ

n)χ⟨δ3b⟩j3+δ3b (ζ
n)Dab|J|wn

for α, β = 1 to 2 do
G
curl A;αβ
ab;i3 j3 ← G

curl A;αβ
ab;i3 j3 + χ

⟨γ3a⟩
i3+δ3a (ζ

n)χ⟨γ3b⟩j3+δ3b (ζ
n)C(a+α)(b+β)|J|−1wn ⊳ (2.50)

for j2, i2 = 0 to p2 do
for a, b = 1 to 3 do

if j2 + δ2b ≤ p2 and i2 + δ2a ≤ p2 then ⊳ Avoids extra computations
Ǧcurl Bab;i2 j2 i3 j3 ← Ǧcurl Bab;i2 j2 i3 j3 + χ

⟨δ2a⟩
i2+δ2a (ζ

m)χ⟨δ2b⟩j2+δ2b (ζ
m)Ǧcurl Aab;i3 j3w

m

for α, β = 1 to 2 do
G
curl B;αβ
ab;i2 j2 i3 j3 ← G

curl B;αβ
ab;i2 j2 i3 j3 + χ

⟨γ2a⟩
i2+δ2a (ζ

m)χ⟨γ2b⟩j2+δ2b (ζ
m)Gcurl A;αβab;i3 j3 wm ⊳ (2.51)

for j2, i2 = 0 to p2 do
for j1, i1 = 0 to p1 do

Determine I, J through (2.44)
if J ≥ I then

for a, b = 1 to 3 do
if j1 + δ1b ≤ p1 and i1 + δ1a ≤ p1 then ⊳ Avoids extra computations

Ǧcurlab;i1 j1 i2 j2 i3 j3 ← Ǧcurlab;i1 j1 i2 j2 i3 j3 + χ
⟨δ1a⟩
i1+δ1a (ζ

l)χ⟨δ1b⟩j1+δ1b (ζ
l)Ǧcurl Bab;i2 j2 i3 j3w

l

for α, β = 1 to 2 do
G
curl;αβ
ab;i1 j1 i2 j2 i3 j3 ← G

curl;αβ
ab;i1 j1 i2 j2 i3 j3 + χ

⟨γ1a⟩
i1+δ1a (ζ

l)χ⟨γ1b⟩j1+δ1b (ζ
l)Gcurl B;αβab;i2 j2 i3 j3w

l

return Gcurl

Algorithm 9: Computation of the H(curl) Gram matrix by sum factorization.

Additionally, the mentioned properties of the Legendre polynomials are formally rewritten like this:
(i) hierarchical polynomial basis

Pn([0, 1]) = span{P0, . . . , Pn}, n = 0, 1, 2, 3, . . . ,

(ii) orthogonality

(Pi , Pj)L2(I) =
1

∫
0

Pi(ξ)Pj(ξ) dξ = δij
1

2i + 1
, i, j ≥ 0,

J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization | 545

(iii) average zero
1

∫
0

Pi(ξ) dξ = 0, i ≥ 1. (2.58)

However, we usually need to evaluate derivatives of the shape functions. In that sense, it would be prefer-
able to have all the nice properties of Legendre polynomials in the derivatives of our shape functions. This
motivates the introduction of the integrated Legendre polynomials, defined as

Li(ξ) =
ξ

∫
0

Pi−1(t) dt = 0, i ≥ 1. (2.59)

This implies
Li (ξ) = Pi−1(ξ), i ≥ 1. (2.60)

Notice that (2.58) and (2.59) imply that Li(0) = Li(1) = 0 for all i ≥ 2. This means that all higher-order
integrated Legendre polynomials are bubbles (smooth functions vanishing at the boundary of its support).
Now, with some elementary calculus and the definitions and properties above, we can find a corresponding
recursion formula for this new family of polynomials,

L1(ξ) = ξ,
2(2i − 1)Li(ξ) = Pi(ξ) − Pi−2(ξ), i ≥ 2.

Finally, we can also do a bit of notation abuse and add a new function to this family,

L0(ξ) = 1 − ξ = 1 − L1(ξ).

The definition of this additional function has the purpose of completing a full basis with the Li polynomials
that is also hierarchical (as long as i ≥ 1), just like in the original Legendre family. Thus we have

Pn([0, 1]) = span{L0, . . . , Ln}, n = 1, 2, 3,

For the 1D Wp
I space, take χi = Li, i = 0, 1, . . . , p; therefore, we are satisfying the requirement (2.33)

thanks to (2.60). In other words, if the 1D H1 shape functions are integrated Legendre polynomials, we
comply with the hierarchical basis property, making the algorithms developed above directly applicable.
This polynomial family will therefore be the constructing block of every finite element space that we have
presented above.

Remark 2.5 (Side note on conformity using integrated Legendre polynomials). Notice that, across two adja-
cent elements, the union of functions L0 and L1 would form what is known as a hat function. In an H1-
conforming discretization, this kind of function is in charge of enforcing continuity at vertices. On the other
hand, the higher-order integrated Legendre polynomials (Li, i ≥ 2) are bubbles, that is, they vanish at end-
points. Consequently, the finite element solution value at vertices is fully determined by the coefficients for
L0 and L1. Conformity in 1D is so guaranteed at the lowest order case and at any higher order. For the 3D
case, by recalling the ideas in Section 2.2, it can be shown that, after constructing the 3D spaces with the 1D
spaces in the way therein shown, conformity is also attained.

3 Applications and Results
As stated earlier, themainmotivation for proposing these integration algorithms has been to use themwithin
the computational implementation of DPG finite element methods, as they require the computation of the
Gram matrix for a high-order discrete test space for each element. Next we summarize the principles of DPG
to illustrate the benefit of applying a fast integration technique in its implementation.

546 | J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization

The DPGmethodology is a family of finite element techniques that are applicable with several variational
formulations [6], a growing number of physical applications [8, 11, 13, 15, 16, 24, 25], and holds desirable
mathematical properties like getting “automatic” stability in any norm [5], being able to conformingly han-
dle general polygonal meshes [26] and having a built-in a posteriori error estimator [3, 9], among others. In
general terms, we can describe any DPG method by referring to an abstract variational formulation like the
following one: find u ∈ U such that

b(u, v) = ℓ(v) for all v ∈ V ,

where U , V are Hilbert spaces of measurable functions defined over a domain Ω, b(⋅ , ⋅) : U × V → ℝ
(or ℂ) is a continuous bilinear (or sesquilinear) form, and ℓ : V → ℝ (or ℂ) is a continuous linear (or anti-
linear) functional on V . Suppose that T is an open partition of our domain Ω, which coincides with the
geometry discretization (mesh) used in the finite element method context. Define the broken test space
as V (T) := {f : Ω → ℝ (or ℂ, orℝ3, . . .)measurable, such that f|K ∈ V |K, K ∈ T}. If testing with functions
from the latter space, an additional set of unknowns is necessarily added. Let ∂T be the set ofmesh interfaces,
or mesh “skeleton”; let W (∂T) be a space of functions defined on ∂T. The resulting problem is: find u ∈ U ,
ũ ∈ W (∂T) such that

b(u, v) + b̃(ũ, v) = ℓ(v) for all v ∈ V (T), (3.1)

where b̃(⋅ , ⋅) is a new bilinear functional acting on elements of W (∂T) paired with traces of V (T) on ∂T.
When going to the discrete (finite-dimensional) problem, we would like to find uh ∈ U h, ũh ∈ W h(∂T), and
for the sake of stability, an appropriate finite-dimensional subspace of V (T) must be picked. DPG’s theo-
retical derivation leads to an exact way of performing this, but it involves the inversion of the Riesz map of
V (T), which in most cases is impossible. Then we limit ourselves to working with an enriched test space,
satisfying dimV r(T) > dimU h + dimW h(∂T). When implementing this, a convenient way to enrich the test
space is to use polynomial spaces of nominal order p + ∆p, with certain increment ∆p > 0 with respect to
the nominal polynomial order p > 0 of the exact sequence associated to the discrete trial spaces (i.e., U h

and W h(∂T)). Once this enriched test space is formed, the final numerical problem of DPG becomes: find
ψ ∈ V r(T), uh ∈ U h, ũh ∈ W h(∂T) such that

{{{
{{{
{

(ψ, v)V r(T) + b(uh , v) + b̃(ũh , v) = ℓ(v) for all v ∈ V r(T),

b(δu, ψ) = 0 for all δu ∈ U h ,

b̃(δũ, ψ) = 0 for all δũ ∈ W h(∂T),

(3.2)

where (⋅ , ⋅)V r(T) is the inner product of the test space. Let {uj}nj=1 be a basis for the first component of the trial
space with n = dimU h; {ũj}n+ñj=n+1 be a basis for the second part of the trial space with ñ = dimW h(∂T); and
{ϕi}mi=1 be a basis for V r(T), where m is its space dimension. With these bases, we represent the unknowns
as follows:

uh =
n
∑
j=1
ujuj , (3.3)

ũh =
n+ñ
∑
j=n+1

ũjwj , (3.4)

ψ =
m
∑
j=1
ϕjsj .

Following this, we can arrive at the augmented linear system shown in the introduction of this paper.
Here we restate it since the context may now demonstrate that (3.2) is equivalent to this system (in the real
case): find s ∈ ℝm, u ∈ ℝn, w ∈ ℝñ such that

{{{
{{{
{

Gs + Bu + B̃w = l,
BTs = 0,
B̃Ts = 0,

(3.5)

where G ∈ ℝm×m is the Gram matrix of V r(T), that is, Gik = (ϕi , ϕk)V r(T); B ∈ ℝm×n is the enriched stiffness

J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization | 547

matrix from the field unknowns, given by Bij = b(uj , ϕi); B̃ ∈ ℝm×ñ is the enriched stiffness matrix from the
skeleton unknowns with B̃ij = b̃(ũj , ϕi); and l ∈ ℝm is the enriched load vector, obtained through li = ℓ(ϕi).

In order to find the approximate solution uh using (3.3), and similarly the solution on interfaces ũh

through (3.4), it is necessary to statically condense s from (3.5) by bringing into consideration that the Gram
matrix is invertible (it represents a discrete Riesz map, which is an isomorphism). Then the new discrete
system (also repeating from the introduction) yields

(
BTG−1B BTG−1B̃
B̃TG−1B B̃TG−1B̃

)(
u
w
) = (

BTG−1l
B̃TG−1l
) . (3.6)

An alternative way of solving the discrete DPG problem is to apply the so-called Discrete Least Squares
framework [17], which has been devised to get, depending on the technique therein implemented, either
a more efficient assembly process or a better conditioned linear system than when the full system (3.6) is
constructed.

Even though there are not results for hexahedral elements, some stability analysis on triangles and tetra-
hedra have been made [4, 21]. Such studies showed that the higher the dimension of the enriched test space
is with respect to the dimension of the trial spaces, the better is the possibility for the practical DPGmethod of
having stability guaranteed. This implies that the Grammatrix in DPG is the largest array whose computation
is required at every element of the partition; therefore a technique to accelerate its construction will favor the
overall implementation of this finite element methodology. However, the fact of using a broken test space
makes G block diagonal, with each block associated to one and only one element of the mesh. This means
that G can be assembled and even “inverted” elementwise, and this is per se a big computational relief. We
encourage the reader to refer to another publication on the matter to know more about the specifics of the
DPG family of methods [7].

To show the effect in time savings that the proposed tensor-product-based integration generates, three
different PDEs (along with their corresponding variational formulation) were picked, and we compared the
time needed to calculate the Gram matrix using conventional and sum factorization algorithms. Moreover,
we compared also the time elapsed for the formation of G, B and l altogether. For all the examples below,
the physical domain was equal to the master hexahedron, and a single-element mesh was considered. The
last statement does not mean that these algorithms have not been tested with multiple elements or a more
challenging physical geometry. In [20], the ultraweak version ofMaxwell’s equationswas implementedunder
adaptive refinements and a curvilinear geometry, in the modeling of fiber laser amplifiers. Due to the very
costly computations at the local level, the sum factorization ideas derived in this work were incorporated
into the code to allow for a finermesh to be resolved in a reasonable time.With p0 = 5, there was an observed
speed-up of about 80 times in the computation of G, B and l on every element. In the cases to be described
next, similar speed-ups are obtained (at least for G).

As a final but important remark, thematricesG, B and l obtained in each of the examples below are equal
(up to machine precision) independently of the algorithm used, which verifies the proper implementation of
the different sum factorization algorithms. In order tomake such a verification step, the resulting values from
the conventional integration algorithm were used as the reference. In the following examples, the ordering
of the loops within the algorithms that was preferred is the alternative one presented in Algorithm 3.

3.1 Primal Formulation for the Poisson Problem

Poisson’s equation is given by
−div(k∇u) = r,

where k is a diffusivity coefficient and r is a source term. This PDE, in the context of DPG, will lead to the
broken primal variational formulation, in the terms of (3.1),

U = H1(Ω), W (∂T) = H−
1
2 (∂T), V = H1(T),

b(u, v) = (k∇u, ∇v)T , b̃(ũ, v) = ⟨ũ, v⟩∂T , ℓ(v) = (r, v)T ,

548 | J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization

p0 ∆p pr Conventional Sum factorization

1 1 2 1.76E−03 1.64E−03
1 2 3 3.14E−03 1.95E−03
2 2 4 1.20E−02 3.31E−03
3 2 5 4.31E−02 6.70E−03
4 2 6 0.163 1.49E−02
5 2 7 0.522 3.05E−02

Table 1: Average computation time (seconds) of Ggrad in the Primal Poisson DPG implementation
for different polynomial orders and two integration algorithms.

4 4.5 5 5.5 6 6.5 7 7.5 8
pr + 1

10-3

10-2

10-1

100

101

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
(s

)

Matrix G compute time - Primal Poisson (H1)

Conventional
Sum Factorization
Ref. line ~ (pr + 1)9

Ref. line ~ (pr + 1)7

Figure 1: Average computation time (seconds) of Ggrad in the Primal Poisson DPG implementation
for different polynomial orders and two integration algorithms with respect to pr + 1.

where (⋅ , ⋅)T = ∑K∈T(⋅ , ⋅)K, ⟨ ⋅ , ⋅ ⟩∂T is a duality pairing between H− 12 (∂T) and H 1
2 (∂T). Recalling the

Piola maps defined above, the main discrete element subspaces are U h = Wp0 = TgradQp0 ,p0 ,p0 (I3) and
V r = Wpr = TgradQpr ,pr ,pr (I3), where pr = p0 + ∆p. In order to compute the enriched stiffness matrix and the
enriched load vector, a new portion of code must be added to Algorithms 4 and 5. The procedure carried out
to compute these additional arrays so far is not optimal, so in a later work the performance of this task can
be improved. Moreover, the computation of B̃ is done in the conventional way at all times; hence we leave it
out of the computing time measurements.

Table 1 shows the average wall clock time of 50 runs of computing the H1 Grammatrix for this problem,
for different values of pr. This plot is made with pr + 1 as the abscissae because this is the parameter with
respect to which the computational cost estimates were presented. The expected trend lines accompany the
two data plots in Figure 1 as a reference to compare with. It is noticeable that, in the conventional case, this
trend fits better to the data than in the new algorithm.

Additionally, Table 2 and Figure 2 show the average time for computing G, B and l within the code’s
element subroutine (the component of the finite element code that constructs the element matrices), having
fixed ∆p = 2. Since B and l are constructed using a conventional integration approach, this result intends to
informa closer estimate of the actual time savingswhenusing sum factorization in aDPGcomputational solu-
tion. Notice that the reference line on this plot indicates that, in both cases, the trend is again approximately
of ninth order.

J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization | 549

p0 ∆p pr Conventional Sum factorization

1 2 3 3.55E−03 2.41E−03
2 2 4 1.60E−02 7.20E−03
3 2 5 6.62E−02 2.81E−02
4 2 6 0.294 0.113
5 2 7 1.01 0.404

Table 2: Average computation time (seconds) of Ggrad, B, l in the Primal Poisson DPG implementation
for different polynomial orders and two integration algorithms.

4 4.5 5 5.5 6 6.5 7 7.5 8
pr+1

10-3

10-2

10-1

100

101

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
(s

)

Matrices G, B, l compute time - Primal Poisson (H1)

Conventional
Sum Factorization
Ref. line ~ (pr + 1)9

Figure 2: Average computation time (seconds) of Ggrad, B, l in the Primal Poisson DPG implementation
for different polynomial orders and two integration algorithms with respect to pr + 1, with fixed ∆p = 2.

3.2 Primal Formulation for Maxwell’s Equations

A second illustrative problem is the time-harmonic Maxwell’s wave equation

curl (μ−1 curl E) − ω2ϵE = iωJ, (3.7)

where E is the unknown electric field, J is the imposed electric current, ω is the angular frequency, and μ and
ϵ are electromagnetic constants (the permeability and the permittivity, respectively). In terms of the abstract
formulation (3.1), the primal version of the broken variational form for (3.7) is

U = H(curl, Ω), W (∂T) = H−
1
2 (div, ∂T), V = H(curl, T),

b(E, F) = (μ−1 curl E, curl F)T − ω2(ϵE, F)T , b̃(Ẽ, F) = −iω⟨Ẽ, F⟩∂T , ℓ(F) = iω(J, F)T ,

where E and Ẽ are the trial variables, F is the test variable, and ⟨ ⋅ , ⋅ ⟩∂T in this case represents the duality
pairing between trace spaces H− 12 (div, ∂T) and H− 12 (curl, ∂T) (see [4]).

The discrete enriched test subspace is Qpr = Tcurl(Qpr−1,pr ,pr (I3) × Qpr ,pr−1,pr (I3) × Qpr ,pr ,pr−1(I3)). The
Gram matrix that corresponds to this problem is the one for H(curl); hereby Algorithms 8 and 9 are going to
be compared.

Similarly to the previous case, we present results for the construction of the Gram matrix in Table 3 and
Figure 3. In this case, the time averages correspond to 20 runs. When taking into account also the integration
of B and l, the results are those shown in Table 4 and in Figure 4.

550 | J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization

p0 ∆p pr Conventional Sum factorization

1 1 2 3.09E−02 3.41E−02
1 2 3 4.22E−02 3.98E−02
2 2 4 0.129 5.39E−02
3 2 5 0.571 9.42E−02
4 2 6 2.30 0.203
5 2 7 7.82 0.464

Table 3: Average computation time (seconds) of Gcurl in the Primal Maxwell DPG implementation
for different polynomial orders and two integration algorithms.

4 4.5 5 5.5 6 6.5 7 7.5 8
pr+1

10-3

10-2

10-1

100

101

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
(s

)

Matrix G compute time - Primal Maxwell (H(curl))

Conventional
Sum Factorization
Ref. line ~ (pr + 1)9

Ref. line ~ (pr + 1)7

Figure 3: Average computation time (seconds) of Gcurl in the Primal Maxwell DPG implementation
for different polynomial orders and two integration algorithms with respect to pr + 1.

p0 ∆p pr Conventional Sum factorization

1 2 3 4.65E−02 3.37E−02
2 2 4 0.167 7.75E−02
3 2 5 0.889 0.340
4 2 6 4.02 1.57
5 2 7 15.36 6.02

Table 4: Average computation time (seconds) of Gcurl, B, l, in the Primal Maxwell DPG implementation
for different polynomial orders and two integration algorithms.

3.3 Acoustics and the Ultraweak Variational Formulation

The time-harmonic acoustics system of equations reads as follows:

{
iωu + ∇p = 0,

iωp + div u = f,

where u is the velocity, p the pressure, and ω the angular frequency. As a first order system, each equation
can be tested independently (with broken test functions), and after applying integration by parts, we get the

J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization | 551

4 4.5 5 5.5 6 6.5 7 7.5 8
pr+1

10-3

10-2

10-1

100

101

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
(s

)

Matrices G, B, l compute time - Primal Maxwell (H(curl))

Conventional
Sum Factorization
Ref. line ~ (pr + 1)9

Figure 4: Average computation time (seconds) of Gcurl, B, l, in the Primal Maxwell DPG implementation
for different polynomial orders and two integration algorithms with respect to pr + 1, with fixed ∆p = 2.

so-called ultraweak variational formulation [24]

U = L2(Ω) × L2(Ω),
W (∂T) = H

1
2 (div, ∂T) × H−

1
2 (div, ∂T),

V = H1(T) × H(div, T),
b((p, u), (q, v)) = (iωu, v)T − (p, div v)T + (iωp, q)T − (u, ∇q)T ,
b̃((p̃, ũn), (q, v)) = ⟨p̃, v ⋅ n⟩∂T + ⟨ũn , q⟩∂T ,

ℓ((q, v)) = (f, v)T .

(3.8)

Interestingly, this variational formulation is characterized by having its field trial variables lying in L2

spaces. This immediately implies that there is no requirement on continuity across elements for the func-
tions belonging to those spaces. Other variational formulations, where the trial space needs some kind of
continuity (e.g., the primal formulations above), and therefore the handling of orientation and the distinc-
tion among the type of shape function (vertex, edge, face, interior) make the tensor-product decomposition
less direct (see [12]). Unlike those, the ultraweak variational formulation directly allows the correspondence
of its discrete trial basis with tensor-product shape functions. As a result, we can apply very similar ideas as
above to compute the volume integrals needed for B and l, in addition to G.

For a single element, notice that the stiffness matrix B arising from the bilinear functional in (3.8) can be
computed as follows:

BIK = (iωuKR , vIV)K − (pKQ , div vIV)K + (iωpKQ , qIH)K − (uKR , ∇qIH)K,

where I is the product index of IH and IV , K is the product index of KQ and KR, pKQ ∈ Yp0 , uKR ∈ (Yp0)3,
qIH ∈ Wpr , and vIV ∈ Vpr . By mapping to the master hexahedron and using the Piola transformations, we
obtain

BIK = ∫
K̂

(iω ̂uTKRJ ̂vIV |J|
−1 − ̂pKQ , ̂div ̂vIV |J|−1 + iω ̂pKQ ̂qIH − ̂uTKRJ

−T∇̂ ̂qIH) d3ξ . (3.9)

For each term of (3.9), we can express the involved shape functions as tensor products of univariate
polynomials and develop similar algorithms as the ones derived above. A similar idea can be applied for the
simpler situation of l.

552 | J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization

Additionally, the choice of a special norm in the ultraweak formulation is of great benefit to be able to
control the solution error in the desired trial norm [6]. Such a norm is the so-called adjoint graph norm with
a corresponding inner product that is defined as follows:

((δq, δv), (q, v))V = [ω
2 + α](δq, q)T + (∇δq, ∇q)T − iω(div δv, q)T + iω(δv, ∇q)T + iω(δq, div v)T
− iω(∇δq, v)T + [ω2 + α](δv, v)T + (div δv, div v)T for all (δq, δv), (q, v) ∈ V . (3.10)

In (3.10), α is some positive real number that is used as a correction due to the fact of using broken test
spaces [24]. Notice that four terms in this inner product were already studied in the H1 and H(div) spaces.
The remaining four terms form aHermitian array so that we need to implement only two of them. Considering
a single element, the third and fourth terms of (3.10) lead to

− iω(div δv, q)K + iω(δv, ∇q)K = iω ∫
K̂

[−(̂div ̂δv)(̂q) + (̂δv)T(∇̂ ̂q)] d3ξ (3.11)

after implementing the respective Piola maps. Finally, besides using Algorithms 5 and 7 for the four associ-
ated terms in (3.10), an analogous sum factorization algorithm must be built for the two integrals in (3.11).

This problem was solved using both conventional integration and tensor-product based integration,
translating the ideas above for the stiffness matrix, the load vector and the Gram matrix produced by the
adjoint graph norm, into the code. Table 5 and Figure 5 show the results of the average computing time (of

p0 ∆p pr Conventional Sum factorization

1 1 2 1.48E−03 7.15E−04
1 2 3 1.05E−02 3.40E−03
2 2 4 7.46E−02 9.62E−03
3 2 5 0.437 2.84E−02
4 2 6 1.900 8.08E−02
5 2 7 6.985 0.214
6 2 8 21.88 0.496

Table 5: Average computation time (seconds) of G, B and l in the ultraweak acoustics DPG implementation
for different polynomial orders and two integration algorithms.

4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
pr + 1

10-3

10-2

10-1

100

101

A
ve

ra
ge

 e
la

ps
ed

 ti
m

e
(s

)

Matrices G, B, l compute time-Ultraweak Acoustics (H1 H(div))

Conventional
Sum Factorization
Ref. line ~ (pr + 1)9

Ref. line ~ (pr + 1)7

Figure 5: Average computation time (seconds) of G, B, l in the ultraweak acoustics DPG implementation
for different polynomial orders and two integration algorithms with respect to pr + 1, with fixed ∆p = 2.

J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization | 553

20 runs) of G, B and l for several polynomial degrees. Here, because of the different trends observed, two
reference lines are presented, one of ninth order and one of seventh order.

3.4 Discussion

The results observed above allow to identify several achievements, while also making clear what aspects
need improvement. Notice that all five plots have the same scales in their axes in order to facilitate visual
comparison.

Firstly, Figures 1 and 3 communicate well that the expected asymptotic reference lines approach the
numerical experiments results as pr increases. Unlike the dashed reference line (corresponding to (pr + 1)9),
which is almost parallel to the plot for conventional integration, the fine dotted line (corresponding to
(pr + 1)7) seems to grow slightly faster than the data for the sum factorization results. It may be expected that
at higher polynomial degrees the rate becomes closer to 7, but at the moment the important outcome is that
the integration of G indeed became two orders of magnitude faster.

As a second observation, we see that Figures 2 and 4 reveal that, when looking at the elapsed time of
computing all the matrices, the sum factorization approach overcomes the performance of the conventional
algorithm at all degrees pr. Such a result is also visible in Tables 2 and 4, in which the difference between
columns 4 and 5 corresponds to the actual time savingwhen going from the conventional integration scheme
to the herein introduced algorithm for every time the element subroutine is invoked in a DPG code. For the
highest values of pr, this saving can be of the order of a second per element in Poisson, or nine seconds in
Maxwell, therefore leading to a big reduction of computation timewhena refinedmesh is in use. It canbe seen
nevertheless that the complexity rate for the compute time of all the matrices, in both types of integration, is
still 9. This happens because computing the stiffness matrix Bwith the conventional algorithm has a leading
term of O((p0 + 1)9) in its computational complexity, which will obviously begin dominating the cost of all
the integration as p0 grows.

Earning all the advantages of sum factorization for numerical integration has therefore the requirement
of finding a good procedure for the construction of B and l. Such a procedure must be able to take profit of
the nesting of integrals, as developed above for so diverse situations, for multiple variational formulations.

For the ultraweak formulation, that was clearly observed. In that case, there was a way to extend the
ideas of sum factorization and take advantage of them, as noticed in Figure 5. There it can be seen that the
complexity rates were successfully taken to the desired order.

As a closing remark, we can state that having proposed and utilized a tensor-product-based algorithm
for the integration of less usual Gram matrices, like that of H(curl) or the adjoint-graph inner product for
H1 × H(div), proved to be very useful regarding the really meaningful relative savings: 16 times faster when
p0 = 5 and ∆p = 2, in Maxwell’s primal form; or 44 times faster in the ultraweak formulation for acoustics
with p0 = 6 and ∆p = 2. This kind of benefit is thereby expected to extend to the rest of energy spaces and
inner products frequently used in DPG and other FE methods.

4 Conclusions
A complete set of algorithms for fast integration of Gram matrices for H1, H(curl), H(div) and L2 spaces for
a general parametric hexahedral element has been presented. The algorithms are based on the sum factor-
ization of tensor-product shape functions. Critical for efficiency is the use of hierarchical shape functions –
Legendre polynomials and their integrals – for the 1D exact sequence. The expected reduction of compu-
tational complexity from O(p9) to O(p7) was verified numerically for the H1, H(div) and H(curl) cases. Of
special significance was the implementation of a problem with the ultraweak variational formulation, that
allowed the full application of the tensor-product-based integration to both the stiffness matrix and load vec-
tor (Figure 5), unlike the other problems studied, for which only the Grammatrix could be treated under this

554 | J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization

scheme (as observed in Figures 1, 3), which made the overall integration time improvement less substantial
(Figures 2, 4).

Although in some cases, the time saving in obtaining the Gram matrix is as dramatic as going from
22 seconds to half a second (acoustics, pr = 8), and this result should persuade some users to consider the
implementation of this set of algorithms; some extra work on this idea seems relevant in order to consoli-
date the concept of fast integration in DPG thanks to a tensor-product-based integration. Such future work
may include a specificway of dealingwith the stiffness and load arrayswhen the trial shape functions require
compatibility between adjacent elements (e.g., in unstructuredmeshes); extending these ideas to the compu-
tation of the element boundary contributions to the stiffness matrix and load vector; the application of these
algorithms to more boundary-value problems that have been studied with DPG so that more test spaces, as
well as more non-conventional norms, can be tried with this approach; and finally, propose the algorithms
for other types of 2D and 3D elements.

Acknowledgment: Theauthors thank the anonymous reviewers for their valuable contributions to thequality
of the paper.

Funding: Jaime Mora has been sponsored by a 2015 Colciencias-Fulbright scholarship, granted by the Gov-
ernment of Colombia and the Fulbright Commission-Colombia. Leszek Demkowicz has been supported by
a grant from AFOSR (FA9550-12-1-0484).

References
[1] M. Ainsworth, G. Andriamaro and O. Davydov, Bernstein–Bézier finite elements of arbitrary order and optimal assembly

procedures, SIAM J. Sci. Comput. 33 (2011), no. 6, 3087–3109.
[2] P. Antolin, A. Buffa, F. Calabrò, M. Martinelli and G. Sangalli, Efficient matrix computation for tensor-product isogeometric

analysis: The use of sum factorization, Comput. Methods Appl. Mech. Engrg. 285 (2015), 817–828.
[3] C. Carstensen, L. Demkowicz and J. Gopalakrishnan, A posteriori error control for DPG methods, SIAM J. Numer. Anal. 52

(2014), no. 3, 1335–1353.
[4] C. Carstensen, L. Demkowicz and J. Gopalakrishnan, Breaking spaces and forms for the DPG method and applications

including Maxwell equations, Comput. Math. Appl. 72 (2016), no. 3, 494–522.
[5] L. Demkowicz and J. Gopalakrishnan, A class of discontinuous Petrov–Galerkin methods. II. Optimal test functions, Numer.

Methods Partial Differential Equations 27 (2011), no. 1, 70–105.
[6] L. Demkowicz and J. Gopalakrishnan, An overview of the discontinuous Petrov Galerkin method, in: Recent Developments

in Discontinuous Galerkin Finite Element Methods for Partial Differential Equations, IMA Vol. Math. Appl. 157, Springer,
Cham (2014), 149–180.

[7] L. Demkowicz and J. Gopalakrishnan, Discontinuous Petrov–Galerkin (DPG) method, ICES Report 15-20, The University of
Texas at Austin, 2015.

[8] L. Demkowicz, J. Gopalakrishnan, S. Nagaraj and P. Sepúlveda, A spacetime DPG method for the Schrödinger equation,
SIAM J. Numer. Anal. 55 (2017), no. 4, 1740–1759.

[9] L. Demkowicz, J. Gopalakrishnan and A. H. Niemi, A class of discontinuous Petrov–Galerkin methods. Part III: Adaptivity,
Appl. Numer. Math. 62 (2012), no. 4, 396–427.

[10] L. Demkowicz, J. Kurtz, D. Pardo, M. Paszyński, W. Rachowicz and A. Zdunek, Computing with hp Finite Elements.
II. Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications, Chapman & Hall/CRC, New York, 2007.

[11] F. Fuentes, L. Demkowicz and A. Wilder, Using a DPG method to validate DMA experimental calibration of viscoelastic
materials, Comput. Methods Appl. Mech. Engrg. 325 (2017), 748–765.

[12] F. Fuentes, B. Keith, L. Demkowicz and S. Nagaraj, Orientation embedded high order shape functions for the exact
sequence elements of all shapes, Comput. Math. Appl. 70 (2015), no. 4, 353–458.

[13] F. Hellwig, Three low-order dPG methods for linear elasticity, Master’s thesis, Humboldt-Universität zu Berlin, Berlin, 2014.
[14] G. E. Karniadakis and S. J. Sherwin, Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd ed., Numer.

Math. Sci. Comput., Oxford University, New York, 2005.
[15] B. Keith, F. Fuentes and L. Demkowicz, The DPG methodology applied to different variational formulations of linear

elasticity, Comput. Methods Appl. Mech. Engrg. 309 (2016), 579–609.
[16] B. Keith, P. Knechtges, N. V. Roberts, S. Elgeti, M. Behr and L. Demkowicz, An ultraweak DPG method for viscoelastic fluids,

J. Non-Newton. Fluid Mech. 247 (2017), 107–122.

J. Mora and L. Demkowicz, Fast Integration of DPG Matrices Based on Sum Factorization | 555

[17] B. Keith, S. Petrides, F. Fuentes and L. Demkowicz, Discrete least-squares finite element methods, Comput. Methods Appl.
Mech. Engrg. 327 (2017), 226–255.

[18] J. P. Kurtz, Fully Automatic hp-Adaptivity for Acoustic and Electromagnetic Scattering in Three Dimensions, ProQuest LLC,
Ann Arbor, 2007.

[19] J. M. Melenk, K. Gerdes and C. Schwab, Fully discrete hp-finite elements: Fast quadrature, Comput. Methods Appl. Math.
190 (2001), no. 32, 4339–4364.

[20] S. Nagaraj, J. Grosek, S. Petrides, L. F. Demkowicz and J. Mora, A 3D DPG Maxwell approach to nonlinear Raman gain in
fiber laser amplifiers, J. Comput. Phys. X 2 (2019), Article ID 100002.

[21] S. Nagaraj, S. Petrides and L. F. Demkowicz, Construction of DPG Fortin operators for second order problems, Comput.
Math. Appl. 74 (2017), no. 8, 1964–1980.

[22] J.-C. Nédélec, Mixed finite elements in R3, Numer. Math. 35 (1980), no. 3, 315–341.
[23] S. A. Orszag, Spectral methods for problems in complex geometries, J. Comput. Phys. 37 (1980), no. 1, 70–92.
[24] S. Petrides and L. F. Demkowicz, An adaptive DPG method for high frequency time-harmonic wave propagation problems,

Comput. Math. Appl. 74 (2017), no. 8, 1999–2017.
[25] N. V. Roberts, A discontinuous Petrov–Galerkin methodology for incompressible flow problems, PhD thesis, The University

of Texas at Austin, Austin, 2013.
[26] A. Vaziri Astaneh, F. Fuentes, J. Mora and L. Demkowicz, High-order polygonal discontinuous Petrov–Galerkin (PolyDPG)

methods using ultraweak formulations, Comput. Methods Appl. Mech. Engrg. 332 (2018), 686–711.

	Fast Integration of DPG Matrices Based on Sum Factorization for all the Energy Spaces
	1 Introduction
	2 Sum Factorization for all the Energy Spaces
	2.1 Exact Sequences
	2.1.1 Exact Sequence in 1D ($\Omega = (a,b)$, $a,b \in \mathbb{R}$, $a < b$)
	2.1.2 Exact Sequence in 3D

	2.2 Tensor-Product Finite Element Shape Functions
	2.3 Space L^{2}
	2.4 Space H^{1}
	2.5 Space $H(\mathrm{div})$
	2.6 Space $H(\mathrm{curl})$
	2.7 Use of Legendre Polynomials

	3 Applications and Results
	3.1 Primal Formulation for the Poisson Problem
	3.2 Primal Formulation for Maxwell's Equations
	3.3 Acoustics and the Ultraweak Variational Formulation
	3.4 Discussion

	4 Conclusions

